YES We show the termination of the TRS R: +(|0|(),y) -> y +(s(x),y) -> s(+(x,y)) ++(nil(),ys) -> ys ++(|:|(x,xs),ys) -> |:|(x,++(xs,ys)) sum(|:|(x,nil())) -> |:|(x,nil()) sum(|:|(x,|:|(y,xs))) -> sum(|:|(+(x,y),xs)) sum(++(xs,|:|(x,|:|(y,ys)))) -> sum(++(xs,sum(|:|(x,|:|(y,ys))))) -(x,|0|()) -> x -(|0|(),s(y)) -> |0|() -(s(x),s(y)) -> -(x,y) quot(|0|(),s(y)) -> |0|() quot(s(x),s(y)) -> s(quot(-(x,y),s(y))) length(nil()) -> |0|() length(|:|(x,xs)) -> s(length(xs)) hd(|:|(x,xs)) -> x avg(xs) -> quot(hd(sum(xs)),length(xs)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: +#(s(x),y) -> +#(x,y) p2: ++#(|:|(x,xs),ys) -> ++#(xs,ys) p3: sum#(|:|(x,|:|(y,xs))) -> sum#(|:|(+(x,y),xs)) p4: sum#(|:|(x,|:|(y,xs))) -> +#(x,y) p5: sum#(++(xs,|:|(x,|:|(y,ys)))) -> sum#(++(xs,sum(|:|(x,|:|(y,ys))))) p6: sum#(++(xs,|:|(x,|:|(y,ys)))) -> ++#(xs,sum(|:|(x,|:|(y,ys)))) p7: sum#(++(xs,|:|(x,|:|(y,ys)))) -> sum#(|:|(x,|:|(y,ys))) p8: -#(s(x),s(y)) -> -#(x,y) p9: quot#(s(x),s(y)) -> quot#(-(x,y),s(y)) p10: quot#(s(x),s(y)) -> -#(x,y) p11: length#(|:|(x,xs)) -> length#(xs) p12: avg#(xs) -> quot#(hd(sum(xs)),length(xs)) p13: avg#(xs) -> hd#(sum(xs)) p14: avg#(xs) -> sum#(xs) p15: avg#(xs) -> length#(xs) and R consists of: r1: +(|0|(),y) -> y r2: +(s(x),y) -> s(+(x,y)) r3: ++(nil(),ys) -> ys r4: ++(|:|(x,xs),ys) -> |:|(x,++(xs,ys)) r5: sum(|:|(x,nil())) -> |:|(x,nil()) r6: sum(|:|(x,|:|(y,xs))) -> sum(|:|(+(x,y),xs)) r7: sum(++(xs,|:|(x,|:|(y,ys)))) -> sum(++(xs,sum(|:|(x,|:|(y,ys))))) r8: -(x,|0|()) -> x r9: -(|0|(),s(y)) -> |0|() r10: -(s(x),s(y)) -> -(x,y) r11: quot(|0|(),s(y)) -> |0|() r12: quot(s(x),s(y)) -> s(quot(-(x,y),s(y))) r13: length(nil()) -> |0|() r14: length(|:|(x,xs)) -> s(length(xs)) r15: hd(|:|(x,xs)) -> x r16: avg(xs) -> quot(hd(sum(xs)),length(xs)) The estimated dependency graph contains the following SCCs: {p5} {p3} {p1} {p2} {p9} {p8} {p11} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: sum#(++(xs,|:|(x,|:|(y,ys)))) -> sum#(++(xs,sum(|:|(x,|:|(y,ys))))) and R consists of: r1: +(|0|(),y) -> y r2: +(s(x),y) -> s(+(x,y)) r3: ++(nil(),ys) -> ys r4: ++(|:|(x,xs),ys) -> |:|(x,++(xs,ys)) r5: sum(|:|(x,nil())) -> |:|(x,nil()) r6: sum(|:|(x,|:|(y,xs))) -> sum(|:|(+(x,y),xs)) r7: sum(++(xs,|:|(x,|:|(y,ys)))) -> sum(++(xs,sum(|:|(x,|:|(y,ys))))) r8: -(x,|0|()) -> x r9: -(|0|(),s(y)) -> |0|() r10: -(s(x),s(y)) -> -(x,y) r11: quot(|0|(),s(y)) -> |0|() r12: quot(s(x),s(y)) -> s(quot(-(x,y),s(y))) r13: length(nil()) -> |0|() r14: length(|:|(x,xs)) -> s(length(xs)) r15: hd(|:|(x,xs)) -> x r16: avg(xs) -> quot(hd(sum(xs)),length(xs)) The set of usable rules consists of r1, r2, r3, r4, r5, r6 Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: nil > s > |0| > ++ > |:| > + > sum > sum# argument filter: pi(sum#) = [1] pi(++) = [1, 2] pi(|:|) = [2] pi(sum) = 1 pi(+) = 2 pi(|0|) = [] pi(s) = 1 pi(nil) = [] 2. matrix interpretations: carrier: N^1 order: standard order interpretations: sum#_A(x1) = x1 ++_A(x1,x2) = x2 + 1 |:|_A(x1,x2) = x2 + 3 sum_A(x1) = 5 +_A(x1,x2) = x2 + 2 |0|_A() = 1 s_A(x1) = 1 nil_A() = 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: sum#(|:|(x,|:|(y,xs))) -> sum#(|:|(+(x,y),xs)) and R consists of: r1: +(|0|(),y) -> y r2: +(s(x),y) -> s(+(x,y)) r3: ++(nil(),ys) -> ys r4: ++(|:|(x,xs),ys) -> |:|(x,++(xs,ys)) r5: sum(|:|(x,nil())) -> |:|(x,nil()) r6: sum(|:|(x,|:|(y,xs))) -> sum(|:|(+(x,y),xs)) r7: sum(++(xs,|:|(x,|:|(y,ys)))) -> sum(++(xs,sum(|:|(x,|:|(y,ys))))) r8: -(x,|0|()) -> x r9: -(|0|(),s(y)) -> |0|() r10: -(s(x),s(y)) -> -(x,y) r11: quot(|0|(),s(y)) -> |0|() r12: quot(s(x),s(y)) -> s(quot(-(x,y),s(y))) r13: length(nil()) -> |0|() r14: length(|:|(x,xs)) -> s(length(xs)) r15: hd(|:|(x,xs)) -> x r16: avg(xs) -> quot(hd(sum(xs)),length(xs)) The set of usable rules consists of r1, r2 Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: |:| > sum# > s > + > |0| argument filter: pi(sum#) = [1] pi(|:|) = [1, 2] pi(+) = 2 pi(|0|) = [] pi(s) = 1 2. matrix interpretations: carrier: N^1 order: standard order interpretations: sum#_A(x1) = x1 |:|_A(x1,x2) = 1 +_A(x1,x2) = x2 + 1 |0|_A() = 0 s_A(x1) = x1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: +#(s(x),y) -> +#(x,y) and R consists of: r1: +(|0|(),y) -> y r2: +(s(x),y) -> s(+(x,y)) r3: ++(nil(),ys) -> ys r4: ++(|:|(x,xs),ys) -> |:|(x,++(xs,ys)) r5: sum(|:|(x,nil())) -> |:|(x,nil()) r6: sum(|:|(x,|:|(y,xs))) -> sum(|:|(+(x,y),xs)) r7: sum(++(xs,|:|(x,|:|(y,ys)))) -> sum(++(xs,sum(|:|(x,|:|(y,ys))))) r8: -(x,|0|()) -> x r9: -(|0|(),s(y)) -> |0|() r10: -(s(x),s(y)) -> -(x,y) r11: quot(|0|(),s(y)) -> |0|() r12: quot(s(x),s(y)) -> s(quot(-(x,y),s(y))) r13: length(nil()) -> |0|() r14: length(|:|(x,xs)) -> s(length(xs)) r15: hd(|:|(x,xs)) -> x r16: avg(xs) -> quot(hd(sum(xs)),length(xs)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: s > +# argument filter: pi(+#) = 1 pi(s) = [1] 2. matrix interpretations: carrier: N^1 order: standard order interpretations: +#_A(x1,x2) = x1 s_A(x1) = x1 + 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: ++#(|:|(x,xs),ys) -> ++#(xs,ys) and R consists of: r1: +(|0|(),y) -> y r2: +(s(x),y) -> s(+(x,y)) r3: ++(nil(),ys) -> ys r4: ++(|:|(x,xs),ys) -> |:|(x,++(xs,ys)) r5: sum(|:|(x,nil())) -> |:|(x,nil()) r6: sum(|:|(x,|:|(y,xs))) -> sum(|:|(+(x,y),xs)) r7: sum(++(xs,|:|(x,|:|(y,ys)))) -> sum(++(xs,sum(|:|(x,|:|(y,ys))))) r8: -(x,|0|()) -> x r9: -(|0|(),s(y)) -> |0|() r10: -(s(x),s(y)) -> -(x,y) r11: quot(|0|(),s(y)) -> |0|() r12: quot(s(x),s(y)) -> s(quot(-(x,y),s(y))) r13: length(nil()) -> |0|() r14: length(|:|(x,xs)) -> s(length(xs)) r15: hd(|:|(x,xs)) -> x r16: avg(xs) -> quot(hd(sum(xs)),length(xs)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: |:| > ++# argument filter: pi(++#) = [1] pi(|:|) = [1, 2] 2. matrix interpretations: carrier: N^1 order: standard order interpretations: ++#_A(x1,x2) = x1 |:|_A(x1,x2) = x1 + x2 + 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: quot#(s(x),s(y)) -> quot#(-(x,y),s(y)) and R consists of: r1: +(|0|(),y) -> y r2: +(s(x),y) -> s(+(x,y)) r3: ++(nil(),ys) -> ys r4: ++(|:|(x,xs),ys) -> |:|(x,++(xs,ys)) r5: sum(|:|(x,nil())) -> |:|(x,nil()) r6: sum(|:|(x,|:|(y,xs))) -> sum(|:|(+(x,y),xs)) r7: sum(++(xs,|:|(x,|:|(y,ys)))) -> sum(++(xs,sum(|:|(x,|:|(y,ys))))) r8: -(x,|0|()) -> x r9: -(|0|(),s(y)) -> |0|() r10: -(s(x),s(y)) -> -(x,y) r11: quot(|0|(),s(y)) -> |0|() r12: quot(s(x),s(y)) -> s(quot(-(x,y),s(y))) r13: length(nil()) -> |0|() r14: length(|:|(x,xs)) -> s(length(xs)) r15: hd(|:|(x,xs)) -> x r16: avg(xs) -> quot(hd(sum(xs)),length(xs)) The set of usable rules consists of r8, r9, r10 Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: |0| > - > quot# > s argument filter: pi(quot#) = 1 pi(s) = [1] pi(-) = 1 pi(|0|) = [] 2. matrix interpretations: carrier: N^1 order: standard order interpretations: quot#_A(x1,x2) = 0 s_A(x1) = x1 -_A(x1,x2) = x1 |0|_A() = 0 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: -#(s(x),s(y)) -> -#(x,y) and R consists of: r1: +(|0|(),y) -> y r2: +(s(x),y) -> s(+(x,y)) r3: ++(nil(),ys) -> ys r4: ++(|:|(x,xs),ys) -> |:|(x,++(xs,ys)) r5: sum(|:|(x,nil())) -> |:|(x,nil()) r6: sum(|:|(x,|:|(y,xs))) -> sum(|:|(+(x,y),xs)) r7: sum(++(xs,|:|(x,|:|(y,ys)))) -> sum(++(xs,sum(|:|(x,|:|(y,ys))))) r8: -(x,|0|()) -> x r9: -(|0|(),s(y)) -> |0|() r10: -(s(x),s(y)) -> -(x,y) r11: quot(|0|(),s(y)) -> |0|() r12: quot(s(x),s(y)) -> s(quot(-(x,y),s(y))) r13: length(nil()) -> |0|() r14: length(|:|(x,xs)) -> s(length(xs)) r15: hd(|:|(x,xs)) -> x r16: avg(xs) -> quot(hd(sum(xs)),length(xs)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: s > -# argument filter: pi(-#) = 2 pi(s) = [1] 2. matrix interpretations: carrier: N^1 order: standard order interpretations: -#_A(x1,x2) = 0 s_A(x1) = x1 + 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: length#(|:|(x,xs)) -> length#(xs) and R consists of: r1: +(|0|(),y) -> y r2: +(s(x),y) -> s(+(x,y)) r3: ++(nil(),ys) -> ys r4: ++(|:|(x,xs),ys) -> |:|(x,++(xs,ys)) r5: sum(|:|(x,nil())) -> |:|(x,nil()) r6: sum(|:|(x,|:|(y,xs))) -> sum(|:|(+(x,y),xs)) r7: sum(++(xs,|:|(x,|:|(y,ys)))) -> sum(++(xs,sum(|:|(x,|:|(y,ys))))) r8: -(x,|0|()) -> x r9: -(|0|(),s(y)) -> |0|() r10: -(s(x),s(y)) -> -(x,y) r11: quot(|0|(),s(y)) -> |0|() r12: quot(s(x),s(y)) -> s(quot(-(x,y),s(y))) r13: length(nil()) -> |0|() r14: length(|:|(x,xs)) -> s(length(xs)) r15: hd(|:|(x,xs)) -> x r16: avg(xs) -> quot(hd(sum(xs)),length(xs)) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: |:| > length# argument filter: pi(length#) = 1 pi(|:|) = [1, 2] 2. matrix interpretations: carrier: N^1 order: standard order interpretations: length#_A(x1) = x1 |:|_A(x1,x2) = x1 + x2 + 1 The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16 We remove them from the problem. Then no dependency pair remains.