YES We show the termination of the TRS R: active(f(X)) -> mark(g(h(f(X)))) mark(f(X)) -> active(f(mark(X))) mark(g(X)) -> active(g(X)) mark(h(X)) -> active(h(mark(X))) f(mark(X)) -> f(X) f(active(X)) -> f(X) g(mark(X)) -> g(X) g(active(X)) -> g(X) h(mark(X)) -> h(X) h(active(X)) -> h(X) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(f(X)) -> mark#(g(h(f(X)))) p2: active#(f(X)) -> g#(h(f(X))) p3: active#(f(X)) -> h#(f(X)) p4: mark#(f(X)) -> active#(f(mark(X))) p5: mark#(f(X)) -> f#(mark(X)) p6: mark#(f(X)) -> mark#(X) p7: mark#(g(X)) -> active#(g(X)) p8: mark#(h(X)) -> active#(h(mark(X))) p9: mark#(h(X)) -> h#(mark(X)) p10: mark#(h(X)) -> mark#(X) p11: f#(mark(X)) -> f#(X) p12: f#(active(X)) -> f#(X) p13: g#(mark(X)) -> g#(X) p14: g#(active(X)) -> g#(X) p15: h#(mark(X)) -> h#(X) p16: h#(active(X)) -> h#(X) and R consists of: r1: active(f(X)) -> mark(g(h(f(X)))) r2: mark(f(X)) -> active(f(mark(X))) r3: mark(g(X)) -> active(g(X)) r4: mark(h(X)) -> active(h(mark(X))) r5: f(mark(X)) -> f(X) r6: f(active(X)) -> f(X) r7: g(mark(X)) -> g(X) r8: g(active(X)) -> g(X) r9: h(mark(X)) -> h(X) r10: h(active(X)) -> h(X) The estimated dependency graph contains the following SCCs: {p1, p4, p6, p7, p8, p10} {p13, p14} {p15, p16} {p11, p12} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(f(X)) -> mark#(g(h(f(X)))) p2: mark#(h(X)) -> mark#(X) p3: mark#(h(X)) -> active#(h(mark(X))) p4: mark#(g(X)) -> active#(g(X)) p5: mark#(f(X)) -> mark#(X) p6: mark#(f(X)) -> active#(f(mark(X))) and R consists of: r1: active(f(X)) -> mark(g(h(f(X)))) r2: mark(f(X)) -> active(f(mark(X))) r3: mark(g(X)) -> active(g(X)) r4: mark(h(X)) -> active(h(mark(X))) r5: f(mark(X)) -> f(X) r6: f(active(X)) -> f(X) r7: g(mark(X)) -> g(X) r8: g(active(X)) -> g(X) r9: h(mark(X)) -> h(X) r10: h(active(X)) -> h(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10 Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: mark > active > active# > f > h > g > mark# argument filter: pi(active#) = 1 pi(f) = [1] pi(mark#) = 1 pi(g) = [] pi(h) = [1] pi(mark) = 1 pi(active) = 1 2. matrix interpretations: carrier: N^1 order: standard order interpretations: active#_A(x1) = 0 f_A(x1) = 1 mark#_A(x1) = 1 g_A(x1) = 1 h_A(x1) = 1 mark_A(x1) = 1 active_A(x1) = 0 The next rules are strictly ordered: p1, p2, p3, p4, p5, p6 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: g#(mark(X)) -> g#(X) p2: g#(active(X)) -> g#(X) and R consists of: r1: active(f(X)) -> mark(g(h(f(X)))) r2: mark(f(X)) -> active(f(mark(X))) r3: mark(g(X)) -> active(g(X)) r4: mark(h(X)) -> active(h(mark(X))) r5: f(mark(X)) -> f(X) r6: f(active(X)) -> f(X) r7: g(mark(X)) -> g(X) r8: g(active(X)) -> g(X) r9: h(mark(X)) -> h(X) r10: h(active(X)) -> h(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: g# > active > mark argument filter: pi(g#) = 1 pi(mark) = [1] pi(active) = 1 2. matrix interpretations: carrier: N^1 order: standard order interpretations: g#_A(x1) = x1 mark_A(x1) = x1 + 1 active_A(x1) = x1 + 1 The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: h#(mark(X)) -> h#(X) p2: h#(active(X)) -> h#(X) and R consists of: r1: active(f(X)) -> mark(g(h(f(X)))) r2: mark(f(X)) -> active(f(mark(X))) r3: mark(g(X)) -> active(g(X)) r4: mark(h(X)) -> active(h(mark(X))) r5: f(mark(X)) -> f(X) r6: f(active(X)) -> f(X) r7: g(mark(X)) -> g(X) r8: g(active(X)) -> g(X) r9: h(mark(X)) -> h(X) r10: h(active(X)) -> h(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: h# > active > mark argument filter: pi(h#) = 1 pi(mark) = [1] pi(active) = 1 2. matrix interpretations: carrier: N^1 order: standard order interpretations: h#_A(x1) = x1 mark_A(x1) = x1 + 1 active_A(x1) = x1 + 1 The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(mark(X)) -> f#(X) p2: f#(active(X)) -> f#(X) and R consists of: r1: active(f(X)) -> mark(g(h(f(X)))) r2: mark(f(X)) -> active(f(mark(X))) r3: mark(g(X)) -> active(g(X)) r4: mark(h(X)) -> active(h(mark(X))) r5: f(mark(X)) -> f(X) r6: f(active(X)) -> f(X) r7: g(mark(X)) -> g(X) r8: g(active(X)) -> g(X) r9: h(mark(X)) -> h(X) r10: h(active(X)) -> h(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: f# > active > mark argument filter: pi(f#) = 1 pi(mark) = [1] pi(active) = 1 2. matrix interpretations: carrier: N^1 order: standard order interpretations: f#_A(x1) = x1 mark_A(x1) = x1 + 1 active_A(x1) = x1 + 1 The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10 We remove them from the problem. Then no dependency pair remains.