YES We show the termination of the TRS R: filter(cons(X),|0|(),M) -> cons(|0|()) filter(cons(X),s(N),M) -> cons(X) sieve(cons(|0|())) -> cons(|0|()) sieve(cons(s(N))) -> cons(s(N)) nats(N) -> cons(N) zprimes() -> sieve(nats(s(s(|0|())))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: zprimes#() -> sieve#(nats(s(s(|0|())))) p2: zprimes#() -> nats#(s(s(|0|()))) and R consists of: r1: filter(cons(X),|0|(),M) -> cons(|0|()) r2: filter(cons(X),s(N),M) -> cons(X) r3: sieve(cons(|0|())) -> cons(|0|()) r4: sieve(cons(s(N))) -> cons(s(N)) r5: nats(N) -> cons(N) r6: zprimes() -> sieve(nats(s(s(|0|())))) The estimated dependency graph contains the following SCCs: (no SCCs)