YES We show the termination of the TRS R: terms(N) -> cons(recip(sqr(N))) sqr(|0|()) -> |0|() sqr(s(X)) -> s(add(sqr(X),dbl(X))) dbl(|0|()) -> |0|() dbl(s(X)) -> s(s(dbl(X))) add(|0|(),X) -> X add(s(X),Y) -> s(add(X,Y)) first(|0|(),X) -> nil() first(s(X),cons(Y)) -> cons(Y) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: terms#(N) -> sqr#(N) p2: sqr#(s(X)) -> add#(sqr(X),dbl(X)) p3: sqr#(s(X)) -> sqr#(X) p4: sqr#(s(X)) -> dbl#(X) p5: dbl#(s(X)) -> dbl#(X) p6: add#(s(X),Y) -> add#(X,Y) and R consists of: r1: terms(N) -> cons(recip(sqr(N))) r2: sqr(|0|()) -> |0|() r3: sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: dbl(|0|()) -> |0|() r5: dbl(s(X)) -> s(s(dbl(X))) r6: add(|0|(),X) -> X r7: add(s(X),Y) -> s(add(X,Y)) r8: first(|0|(),X) -> nil() r9: first(s(X),cons(Y)) -> cons(Y) The estimated dependency graph contains the following SCCs: {p3} {p6} {p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: sqr#(s(X)) -> sqr#(X) and R consists of: r1: terms(N) -> cons(recip(sqr(N))) r2: sqr(|0|()) -> |0|() r3: sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: dbl(|0|()) -> |0|() r5: dbl(s(X)) -> s(s(dbl(X))) r6: add(|0|(),X) -> X r7: add(s(X),Y) -> s(add(X,Y)) r8: first(|0|(),X) -> nil() r9: first(s(X),cons(Y)) -> cons(Y) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: sqr# > s argument filter: pi(sqr#) = 1 pi(s) = [1] 2. matrix interpretations: carrier: N^1 order: standard order interpretations: sqr#_A(x1) = x1 s_A(x1) = x1 + 1 The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: add#(s(X),Y) -> add#(X,Y) and R consists of: r1: terms(N) -> cons(recip(sqr(N))) r2: sqr(|0|()) -> |0|() r3: sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: dbl(|0|()) -> |0|() r5: dbl(s(X)) -> s(s(dbl(X))) r6: add(|0|(),X) -> X r7: add(s(X),Y) -> s(add(X,Y)) r8: first(|0|(),X) -> nil() r9: first(s(X),cons(Y)) -> cons(Y) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: s > add# argument filter: pi(add#) = 1 pi(s) = [1] 2. matrix interpretations: carrier: N^1 order: standard order interpretations: add#_A(x1,x2) = x1 s_A(x1) = x1 + 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: dbl#(s(X)) -> dbl#(X) and R consists of: r1: terms(N) -> cons(recip(sqr(N))) r2: sqr(|0|()) -> |0|() r3: sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: dbl(|0|()) -> |0|() r5: dbl(s(X)) -> s(s(dbl(X))) r6: add(|0|(),X) -> X r7: add(s(X),Y) -> s(add(X,Y)) r8: first(|0|(),X) -> nil() r9: first(s(X),cons(Y)) -> cons(Y) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: dbl# > s argument filter: pi(dbl#) = 1 pi(s) = [1] 2. matrix interpretations: carrier: N^1 order: standard order interpretations: dbl#_A(x1) = x1 s_A(x1) = x1 + 1 The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9 We remove them from the problem. Then no dependency pair remains.