YES We show the termination of the TRS R: f(s(x1),x2,x3,x4,x5) -> f(x1,x2,x3,x4,x5) f(|0|(),s(x2),x3,x4,x5) -> f(x2,x2,x3,x4,x5) f(|0|(),|0|(),s(x3),x4,x5) -> f(x3,x3,x3,x4,x5) f(|0|(),|0|(),|0|(),s(x4),x5) -> f(x4,x4,x4,x4,x5) f(|0|(),|0|(),|0|(),|0|(),s(x5)) -> f(x5,x5,x5,x5,x5) f(|0|(),|0|(),|0|(),|0|(),|0|()) -> |0|() -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(s(x1),x2,x3,x4,x5) -> f#(x1,x2,x3,x4,x5) p2: f#(|0|(),s(x2),x3,x4,x5) -> f#(x2,x2,x3,x4,x5) p3: f#(|0|(),|0|(),s(x3),x4,x5) -> f#(x3,x3,x3,x4,x5) p4: f#(|0|(),|0|(),|0|(),s(x4),x5) -> f#(x4,x4,x4,x4,x5) p5: f#(|0|(),|0|(),|0|(),|0|(),s(x5)) -> f#(x5,x5,x5,x5,x5) and R consists of: r1: f(s(x1),x2,x3,x4,x5) -> f(x1,x2,x3,x4,x5) r2: f(|0|(),s(x2),x3,x4,x5) -> f(x2,x2,x3,x4,x5) r3: f(|0|(),|0|(),s(x3),x4,x5) -> f(x3,x3,x3,x4,x5) r4: f(|0|(),|0|(),|0|(),s(x4),x5) -> f(x4,x4,x4,x4,x5) r5: f(|0|(),|0|(),|0|(),|0|(),s(x5)) -> f(x5,x5,x5,x5,x5) r6: f(|0|(),|0|(),|0|(),|0|(),|0|()) -> |0|() The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(s(x1),x2,x3,x4,x5) -> f#(x1,x2,x3,x4,x5) p2: f#(|0|(),|0|(),|0|(),|0|(),s(x5)) -> f#(x5,x5,x5,x5,x5) p3: f#(|0|(),|0|(),|0|(),s(x4),x5) -> f#(x4,x4,x4,x4,x5) p4: f#(|0|(),|0|(),s(x3),x4,x5) -> f#(x3,x3,x3,x4,x5) p5: f#(|0|(),s(x2),x3,x4,x5) -> f#(x2,x2,x3,x4,x5) and R consists of: r1: f(s(x1),x2,x3,x4,x5) -> f(x1,x2,x3,x4,x5) r2: f(|0|(),s(x2),x3,x4,x5) -> f(x2,x2,x3,x4,x5) r3: f(|0|(),|0|(),s(x3),x4,x5) -> f(x3,x3,x3,x4,x5) r4: f(|0|(),|0|(),|0|(),s(x4),x5) -> f(x4,x4,x4,x4,x5) r5: f(|0|(),|0|(),|0|(),|0|(),s(x5)) -> f(x5,x5,x5,x5,x5) r6: f(|0|(),|0|(),|0|(),|0|(),|0|()) -> |0|() The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: |0| > f# > s argument filter: pi(f#) = [5] pi(s) = 1 pi(|0|) = [] 2. matrix interpretations: carrier: N^1 order: standard order interpretations: f#_A(x1,x2,x3,x4,x5) = x5 s_A(x1) = x1 + 1 |0|_A() = 1 The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(s(x1),x2,x3,x4,x5) -> f#(x1,x2,x3,x4,x5) p2: f#(|0|(),|0|(),|0|(),s(x4),x5) -> f#(x4,x4,x4,x4,x5) p3: f#(|0|(),|0|(),s(x3),x4,x5) -> f#(x3,x3,x3,x4,x5) p4: f#(|0|(),s(x2),x3,x4,x5) -> f#(x2,x2,x3,x4,x5) and R consists of: r1: f(s(x1),x2,x3,x4,x5) -> f(x1,x2,x3,x4,x5) r2: f(|0|(),s(x2),x3,x4,x5) -> f(x2,x2,x3,x4,x5) r3: f(|0|(),|0|(),s(x3),x4,x5) -> f(x3,x3,x3,x4,x5) r4: f(|0|(),|0|(),|0|(),s(x4),x5) -> f(x4,x4,x4,x4,x5) r5: f(|0|(),|0|(),|0|(),|0|(),s(x5)) -> f(x5,x5,x5,x5,x5) r6: f(|0|(),|0|(),|0|(),|0|(),|0|()) -> |0|() The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(s(x1),x2,x3,x4,x5) -> f#(x1,x2,x3,x4,x5) p2: f#(|0|(),s(x2),x3,x4,x5) -> f#(x2,x2,x3,x4,x5) p3: f#(|0|(),|0|(),s(x3),x4,x5) -> f#(x3,x3,x3,x4,x5) p4: f#(|0|(),|0|(),|0|(),s(x4),x5) -> f#(x4,x4,x4,x4,x5) and R consists of: r1: f(s(x1),x2,x3,x4,x5) -> f(x1,x2,x3,x4,x5) r2: f(|0|(),s(x2),x3,x4,x5) -> f(x2,x2,x3,x4,x5) r3: f(|0|(),|0|(),s(x3),x4,x5) -> f(x3,x3,x3,x4,x5) r4: f(|0|(),|0|(),|0|(),s(x4),x5) -> f(x4,x4,x4,x4,x5) r5: f(|0|(),|0|(),|0|(),|0|(),s(x5)) -> f(x5,x5,x5,x5,x5) r6: f(|0|(),|0|(),|0|(),|0|(),|0|()) -> |0|() The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: f# > |0| > s argument filter: pi(f#) = [4] pi(s) = 1 pi(|0|) = [] 2. matrix interpretations: carrier: N^1 order: standard order interpretations: f#_A(x1,x2,x3,x4,x5) = x4 s_A(x1) = x1 + 1 |0|_A() = 1 The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(s(x1),x2,x3,x4,x5) -> f#(x1,x2,x3,x4,x5) p2: f#(|0|(),s(x2),x3,x4,x5) -> f#(x2,x2,x3,x4,x5) p3: f#(|0|(),|0|(),s(x3),x4,x5) -> f#(x3,x3,x3,x4,x5) and R consists of: r1: f(s(x1),x2,x3,x4,x5) -> f(x1,x2,x3,x4,x5) r2: f(|0|(),s(x2),x3,x4,x5) -> f(x2,x2,x3,x4,x5) r3: f(|0|(),|0|(),s(x3),x4,x5) -> f(x3,x3,x3,x4,x5) r4: f(|0|(),|0|(),|0|(),s(x4),x5) -> f(x4,x4,x4,x4,x5) r5: f(|0|(),|0|(),|0|(),|0|(),s(x5)) -> f(x5,x5,x5,x5,x5) r6: f(|0|(),|0|(),|0|(),|0|(),|0|()) -> |0|() The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(s(x1),x2,x3,x4,x5) -> f#(x1,x2,x3,x4,x5) p2: f#(|0|(),|0|(),s(x3),x4,x5) -> f#(x3,x3,x3,x4,x5) p3: f#(|0|(),s(x2),x3,x4,x5) -> f#(x2,x2,x3,x4,x5) and R consists of: r1: f(s(x1),x2,x3,x4,x5) -> f(x1,x2,x3,x4,x5) r2: f(|0|(),s(x2),x3,x4,x5) -> f(x2,x2,x3,x4,x5) r3: f(|0|(),|0|(),s(x3),x4,x5) -> f(x3,x3,x3,x4,x5) r4: f(|0|(),|0|(),|0|(),s(x4),x5) -> f(x4,x4,x4,x4,x5) r5: f(|0|(),|0|(),|0|(),|0|(),s(x5)) -> f(x5,x5,x5,x5,x5) r6: f(|0|(),|0|(),|0|(),|0|(),|0|()) -> |0|() The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: s > f# > |0| argument filter: pi(f#) = [3] pi(s) = 1 pi(|0|) = [] 2. matrix interpretations: carrier: N^1 order: standard order interpretations: f#_A(x1,x2,x3,x4,x5) = x3 s_A(x1) = x1 + 1 |0|_A() = 1 The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(s(x1),x2,x3,x4,x5) -> f#(x1,x2,x3,x4,x5) p2: f#(|0|(),s(x2),x3,x4,x5) -> f#(x2,x2,x3,x4,x5) and R consists of: r1: f(s(x1),x2,x3,x4,x5) -> f(x1,x2,x3,x4,x5) r2: f(|0|(),s(x2),x3,x4,x5) -> f(x2,x2,x3,x4,x5) r3: f(|0|(),|0|(),s(x3),x4,x5) -> f(x3,x3,x3,x4,x5) r4: f(|0|(),|0|(),|0|(),s(x4),x5) -> f(x4,x4,x4,x4,x5) r5: f(|0|(),|0|(),|0|(),|0|(),s(x5)) -> f(x5,x5,x5,x5,x5) r6: f(|0|(),|0|(),|0|(),|0|(),|0|()) -> |0|() The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(s(x1),x2,x3,x4,x5) -> f#(x1,x2,x3,x4,x5) p2: f#(|0|(),s(x2),x3,x4,x5) -> f#(x2,x2,x3,x4,x5) and R consists of: r1: f(s(x1),x2,x3,x4,x5) -> f(x1,x2,x3,x4,x5) r2: f(|0|(),s(x2),x3,x4,x5) -> f(x2,x2,x3,x4,x5) r3: f(|0|(),|0|(),s(x3),x4,x5) -> f(x3,x3,x3,x4,x5) r4: f(|0|(),|0|(),|0|(),s(x4),x5) -> f(x4,x4,x4,x4,x5) r5: f(|0|(),|0|(),|0|(),|0|(),s(x5)) -> f(x5,x5,x5,x5,x5) r6: f(|0|(),|0|(),|0|(),|0|(),|0|()) -> |0|() The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: |0| > s > f# argument filter: pi(f#) = [1, 2] pi(s) = [1] pi(|0|) = [] 2. matrix interpretations: carrier: N^1 order: standard order interpretations: f#_A(x1,x2,x3,x4,x5) = x1 + x2 s_A(x1) = x1 + 1 |0|_A() = 1 The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains.