YES We show the termination of the TRS R: f(|0|()) -> true() f(|1|()) -> false() f(s(x)) -> f(x) if(true(),x,y) -> x if(false(),x,y) -> y g(s(x),s(y)) -> if(f(x),s(x),s(y)) g(x,c(y)) -> g(x,g(s(c(y)),y)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(s(x)) -> f#(x) p2: g#(s(x),s(y)) -> if#(f(x),s(x),s(y)) p3: g#(s(x),s(y)) -> f#(x) p4: g#(x,c(y)) -> g#(x,g(s(c(y)),y)) p5: g#(x,c(y)) -> g#(s(c(y)),y) and R consists of: r1: f(|0|()) -> true() r2: f(|1|()) -> false() r3: f(s(x)) -> f(x) r4: if(true(),x,y) -> x r5: if(false(),x,y) -> y r6: g(s(x),s(y)) -> if(f(x),s(x),s(y)) r7: g(x,c(y)) -> g(x,g(s(c(y)),y)) The estimated dependency graph contains the following SCCs: {p4, p5} {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: g#(x,c(y)) -> g#(s(c(y)),y) p2: g#(x,c(y)) -> g#(x,g(s(c(y)),y)) and R consists of: r1: f(|0|()) -> true() r2: f(|1|()) -> false() r3: f(s(x)) -> f(x) r4: if(true(),x,y) -> x r5: if(false(),x,y) -> y r6: g(s(x),s(y)) -> if(f(x),s(x),s(y)) r7: g(x,c(y)) -> g(x,g(s(c(y)),y)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7 Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: c > g > if > |1| > s > f > false > |0| > true > g# argument filter: pi(g#) = 2 pi(c) = [1] pi(s) = [] pi(g) = [] pi(f) = [] pi(|0|) = [] pi(true) = [] pi(|1|) = [] pi(false) = [] pi(if) = [1, 2, 3] 2. matrix interpretations: carrier: N^1 order: standard order interpretations: g#_A(x1,x2) = 0 c_A(x1) = x1 + 1 s_A(x1) = 1 g_A(x1,x2) = 2 f_A(x1) = 1 |0|_A() = 0 true_A() = 1 |1|_A() = 0 false_A() = 1 if_A(x1,x2,x3) = 3 The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(s(x)) -> f#(x) and R consists of: r1: f(|0|()) -> true() r2: f(|1|()) -> false() r3: f(s(x)) -> f(x) r4: if(true(),x,y) -> x r5: if(false(),x,y) -> y r6: g(s(x),s(y)) -> if(f(x),s(x),s(y)) r7: g(x,c(y)) -> g(x,g(s(c(y)),y)) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: f# > s argument filter: pi(f#) = 1 pi(s) = [1] 2. matrix interpretations: carrier: N^1 order: standard order interpretations: f#_A(x1) = x1 s_A(x1) = x1 + 1 The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7 We remove them from the problem. Then no dependency pair remains.