YES We show the termination of the TRS R: f(|0|()) -> |0|() f(s(|0|())) -> s(|0|()) f(s(s(x))) -> p(h(g(x))) g(|0|()) -> pair(s(|0|()),s(|0|())) g(s(x)) -> h(g(x)) h(x) -> pair(+(p(x),q(x)),p(x)) p(pair(x,y)) -> x q(pair(x,y)) -> y +(x,|0|()) -> x +(x,s(y)) -> s(+(x,y)) f(s(s(x))) -> +(p(g(x)),q(g(x))) g(s(x)) -> pair(+(p(g(x)),q(g(x))),p(g(x))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(s(s(x))) -> p#(h(g(x))) p2: f#(s(s(x))) -> h#(g(x)) p3: f#(s(s(x))) -> g#(x) p4: g#(s(x)) -> h#(g(x)) p5: g#(s(x)) -> g#(x) p6: h#(x) -> +#(p(x),q(x)) p7: h#(x) -> p#(x) p8: h#(x) -> q#(x) p9: +#(x,s(y)) -> +#(x,y) p10: f#(s(s(x))) -> +#(p(g(x)),q(g(x))) p11: f#(s(s(x))) -> p#(g(x)) p12: f#(s(s(x))) -> g#(x) p13: f#(s(s(x))) -> q#(g(x)) p14: g#(s(x)) -> +#(p(g(x)),q(g(x))) p15: g#(s(x)) -> p#(g(x)) p16: g#(s(x)) -> g#(x) p17: g#(s(x)) -> q#(g(x)) and R consists of: r1: f(|0|()) -> |0|() r2: f(s(|0|())) -> s(|0|()) r3: f(s(s(x))) -> p(h(g(x))) r4: g(|0|()) -> pair(s(|0|()),s(|0|())) r5: g(s(x)) -> h(g(x)) r6: h(x) -> pair(+(p(x),q(x)),p(x)) r7: p(pair(x,y)) -> x r8: q(pair(x,y)) -> y r9: +(x,|0|()) -> x r10: +(x,s(y)) -> s(+(x,y)) r11: f(s(s(x))) -> +(p(g(x)),q(g(x))) r12: g(s(x)) -> pair(+(p(g(x)),q(g(x))),p(g(x))) The estimated dependency graph contains the following SCCs: {p5, p16} {p9} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: g#(s(x)) -> g#(x) and R consists of: r1: f(|0|()) -> |0|() r2: f(s(|0|())) -> s(|0|()) r3: f(s(s(x))) -> p(h(g(x))) r4: g(|0|()) -> pair(s(|0|()),s(|0|())) r5: g(s(x)) -> h(g(x)) r6: h(x) -> pair(+(p(x),q(x)),p(x)) r7: p(pair(x,y)) -> x r8: q(pair(x,y)) -> y r9: +(x,|0|()) -> x r10: +(x,s(y)) -> s(+(x,y)) r11: f(s(s(x))) -> +(p(g(x)),q(g(x))) r12: g(s(x)) -> pair(+(p(g(x)),q(g(x))),p(g(x))) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: g# > s argument filter: pi(g#) = 1 pi(s) = [1] 2. matrix interpretations: carrier: N^1 order: standard order interpretations: g#_A(x1) = x1 s_A(x1) = x1 + 1 The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: +#(x,s(y)) -> +#(x,y) and R consists of: r1: f(|0|()) -> |0|() r2: f(s(|0|())) -> s(|0|()) r3: f(s(s(x))) -> p(h(g(x))) r4: g(|0|()) -> pair(s(|0|()),s(|0|())) r5: g(s(x)) -> h(g(x)) r6: h(x) -> pair(+(p(x),q(x)),p(x)) r7: p(pair(x,y)) -> x r8: q(pair(x,y)) -> y r9: +(x,|0|()) -> x r10: +(x,s(y)) -> s(+(x,y)) r11: f(s(s(x))) -> +(p(g(x)),q(g(x))) r12: g(s(x)) -> pair(+(p(g(x)),q(g(x))),p(g(x))) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: s > +# argument filter: pi(+#) = 2 pi(s) = [1] 2. matrix interpretations: carrier: N^1 order: standard order interpretations: +#_A(x1,x2) = x2 s_A(x1) = x1 + 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.