YES

We show the termination of the TRS R:

  eq(|0|(),|0|()) -> true()
  eq(|0|(),s(X)) -> false()
  eq(s(X),|0|()) -> false()
  eq(s(X),s(Y)) -> eq(X,Y)
  rm(N,nil()) -> nil()
  rm(N,add(M,X)) -> ifrm(eq(N,M),N,add(M,X))
  ifrm(true(),N,add(M,X)) -> rm(N,X)
  ifrm(false(),N,add(M,X)) -> add(M,rm(N,X))
  purge(nil()) -> nil()
  purge(add(N,X)) -> add(N,purge(rm(N,X)))

-- SCC decomposition.

Consider the dependency pair problem (P, R), where P consists of

p1: eq#(s(X),s(Y)) -> eq#(X,Y)
p2: rm#(N,add(M,X)) -> ifrm#(eq(N,M),N,add(M,X))
p3: rm#(N,add(M,X)) -> eq#(N,M)
p4: ifrm#(true(),N,add(M,X)) -> rm#(N,X)
p5: ifrm#(false(),N,add(M,X)) -> rm#(N,X)
p6: purge#(add(N,X)) -> purge#(rm(N,X))
p7: purge#(add(N,X)) -> rm#(N,X)

and R consists of:

r1: eq(|0|(),|0|()) -> true()
r2: eq(|0|(),s(X)) -> false()
r3: eq(s(X),|0|()) -> false()
r4: eq(s(X),s(Y)) -> eq(X,Y)
r5: rm(N,nil()) -> nil()
r6: rm(N,add(M,X)) -> ifrm(eq(N,M),N,add(M,X))
r7: ifrm(true(),N,add(M,X)) -> rm(N,X)
r8: ifrm(false(),N,add(M,X)) -> add(M,rm(N,X))
r9: purge(nil()) -> nil()
r10: purge(add(N,X)) -> add(N,purge(rm(N,X)))

The estimated dependency graph contains the following SCCs:

  {p6}
  {p2, p4, p5}
  {p1}


-- Reduction pair.

Consider the dependency pair problem (P, R), where P consists of

p1: purge#(add(N,X)) -> purge#(rm(N,X))

and R consists of:

r1: eq(|0|(),|0|()) -> true()
r2: eq(|0|(),s(X)) -> false()
r3: eq(s(X),|0|()) -> false()
r4: eq(s(X),s(Y)) -> eq(X,Y)
r5: rm(N,nil()) -> nil()
r6: rm(N,add(M,X)) -> ifrm(eq(N,M),N,add(M,X))
r7: ifrm(true(),N,add(M,X)) -> rm(N,X)
r8: ifrm(false(),N,add(M,X)) -> add(M,rm(N,X))
r9: purge(nil()) -> nil()
r10: purge(add(N,X)) -> add(N,purge(rm(N,X)))

The set of usable rules consists of

  r1, r2, r3, r4, r5, r6, r7, r8

Take the reduction pair:

  lexicographic combination of reduction pairs:
  
    1. lexicographic path order with precedence:
    
      precedence:
      
        nil > add > ifrm > rm > eq > false > s > true > |0| > purge#
      
      argument filter:
    
        pi(purge#) = [1]
        pi(add) = [1, 2]
        pi(rm) = 2
        pi(eq) = []
        pi(|0|) = []
        pi(true) = []
        pi(s) = [1]
        pi(false) = []
        pi(ifrm) = 3
        pi(nil) = []
    
    2. matrix interpretations:
    
      carrier: N^1
      order: standard order
      interpretations:
        purge#_A(x1) = x1
        add_A(x1,x2) = 1
        rm_A(x1,x2) = 3
        eq_A(x1,x2) = 1
        |0|_A() = 0
        true_A() = 1
        s_A(x1) = x1 + 1
        false_A() = 1
        ifrm_A(x1,x2,x3) = x3 + 1
        nil_A() = 2
    

The next rules are strictly ordered:

  p1

We remove them from the problem.  Then no dependency pair remains.

-- Reduction pair.

Consider the dependency pair problem (P, R), where P consists of

p1: ifrm#(false(),N,add(M,X)) -> rm#(N,X)
p2: rm#(N,add(M,X)) -> ifrm#(eq(N,M),N,add(M,X))
p3: ifrm#(true(),N,add(M,X)) -> rm#(N,X)

and R consists of:

r1: eq(|0|(),|0|()) -> true()
r2: eq(|0|(),s(X)) -> false()
r3: eq(s(X),|0|()) -> false()
r4: eq(s(X),s(Y)) -> eq(X,Y)
r5: rm(N,nil()) -> nil()
r6: rm(N,add(M,X)) -> ifrm(eq(N,M),N,add(M,X))
r7: ifrm(true(),N,add(M,X)) -> rm(N,X)
r8: ifrm(false(),N,add(M,X)) -> add(M,rm(N,X))
r9: purge(nil()) -> nil()
r10: purge(add(N,X)) -> add(N,purge(rm(N,X)))

The set of usable rules consists of

  r1, r2, r3, r4

Take the reduction pair:

  lexicographic combination of reduction pairs:
  
    1. lexicographic path order with precedence:
    
      precedence:
      
        eq > false > s > |0| > ifrm# > add > rm# > true
      
      argument filter:
    
        pi(ifrm#) = 3
        pi(false) = []
        pi(add) = [1, 2]
        pi(rm#) = [2]
        pi(eq) = [1, 2]
        pi(true) = []
        pi(|0|) = []
        pi(s) = 1
    
    2. matrix interpretations:
    
      carrier: N^1
      order: standard order
      interpretations:
        ifrm#_A(x1,x2,x3) = x3
        false_A() = 1
        add_A(x1,x2) = x1 + x2 + 1
        rm#_A(x1,x2) = 2
        eq_A(x1,x2) = 1
        true_A() = 1
        |0|_A() = 0
        s_A(x1) = x1 + 1
    

The next rules are strictly ordered:

  p1, p2, p3

We remove them from the problem.  Then no dependency pair remains.

-- Reduction pair.

Consider the dependency pair problem (P, R), where P consists of

p1: eq#(s(X),s(Y)) -> eq#(X,Y)

and R consists of:

r1: eq(|0|(),|0|()) -> true()
r2: eq(|0|(),s(X)) -> false()
r3: eq(s(X),|0|()) -> false()
r4: eq(s(X),s(Y)) -> eq(X,Y)
r5: rm(N,nil()) -> nil()
r6: rm(N,add(M,X)) -> ifrm(eq(N,M),N,add(M,X))
r7: ifrm(true(),N,add(M,X)) -> rm(N,X)
r8: ifrm(false(),N,add(M,X)) -> add(M,rm(N,X))
r9: purge(nil()) -> nil()
r10: purge(add(N,X)) -> add(N,purge(rm(N,X)))

The set of usable rules consists of

  (no rules)

Take the reduction pair:

  lexicographic combination of reduction pairs:
  
    1. lexicographic path order with precedence:
    
      precedence:
      
        s > eq#
      
      argument filter:
    
        pi(eq#) = 2
        pi(s) = [1]
    
    2. matrix interpretations:
    
      carrier: N^1
      order: standard order
      interpretations:
        eq#_A(x1,x2) = 0
        s_A(x1) = x1 + 1
    

The next rules are strictly ordered:

  p1

We remove them from the problem.  Then no dependency pair remains.