YES We show the termination of the TRS R: -(x,|0|()) -> x -(s(x),s(y)) -> -(x,y) <=(|0|(),y) -> true() <=(s(x),|0|()) -> false() <=(s(x),s(y)) -> <=(x,y) if(true(),x,y) -> x if(false(),x,y) -> y perfectp(|0|()) -> false() perfectp(s(x)) -> f(x,s(|0|()),s(x),s(x)) f(|0|(),y,|0|(),u) -> true() f(|0|(),y,s(z),u) -> false() f(s(x),|0|(),z,u) -> f(x,u,-(z,s(x)),u) f(s(x),s(y),z,u) -> if(<=(x,y),f(s(x),-(y,x),z,u),f(x,u,z,u)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: -#(s(x),s(y)) -> -#(x,y) p2: <=#(s(x),s(y)) -> <=#(x,y) p3: perfectp#(s(x)) -> f#(x,s(|0|()),s(x),s(x)) p4: f#(s(x),|0|(),z,u) -> f#(x,u,-(z,s(x)),u) p5: f#(s(x),|0|(),z,u) -> -#(z,s(x)) p6: f#(s(x),s(y),z,u) -> if#(<=(x,y),f(s(x),-(y,x),z,u),f(x,u,z,u)) p7: f#(s(x),s(y),z,u) -> <=#(x,y) p8: f#(s(x),s(y),z,u) -> f#(s(x),-(y,x),z,u) p9: f#(s(x),s(y),z,u) -> -#(y,x) p10: f#(s(x),s(y),z,u) -> f#(x,u,z,u) and R consists of: r1: -(x,|0|()) -> x r2: -(s(x),s(y)) -> -(x,y) r3: <=(|0|(),y) -> true() r4: <=(s(x),|0|()) -> false() r5: <=(s(x),s(y)) -> <=(x,y) r6: if(true(),x,y) -> x r7: if(false(),x,y) -> y r8: perfectp(|0|()) -> false() r9: perfectp(s(x)) -> f(x,s(|0|()),s(x),s(x)) r10: f(|0|(),y,|0|(),u) -> true() r11: f(|0|(),y,s(z),u) -> false() r12: f(s(x),|0|(),z,u) -> f(x,u,-(z,s(x)),u) r13: f(s(x),s(y),z,u) -> if(<=(x,y),f(s(x),-(y,x),z,u),f(x,u,z,u)) The estimated dependency graph contains the following SCCs: {p4, p8, p10} {p1} {p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(s(x),|0|(),z,u) -> f#(x,u,-(z,s(x)),u) p2: f#(s(x),s(y),z,u) -> f#(x,u,z,u) p3: f#(s(x),s(y),z,u) -> f#(s(x),-(y,x),z,u) and R consists of: r1: -(x,|0|()) -> x r2: -(s(x),s(y)) -> -(x,y) r3: <=(|0|(),y) -> true() r4: <=(s(x),|0|()) -> false() r5: <=(s(x),s(y)) -> <=(x,y) r6: if(true(),x,y) -> x r7: if(false(),x,y) -> y r8: perfectp(|0|()) -> false() r9: perfectp(s(x)) -> f(x,s(|0|()),s(x),s(x)) r10: f(|0|(),y,|0|(),u) -> true() r11: f(|0|(),y,s(z),u) -> false() r12: f(s(x),|0|(),z,u) -> f(x,u,-(z,s(x)),u) r13: f(s(x),s(y),z,u) -> if(<=(x,y),f(s(x),-(y,x),z,u),f(x,u,z,u)) The set of usable rules consists of r1, r2 Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: |0| > s > - > f# argument filter: pi(f#) = [1] pi(s) = 1 pi(|0|) = [] pi(-) = 1 2. matrix interpretations: carrier: N^1 order: standard order interpretations: f#_A(x1,x2,x3,x4) = x1 s_A(x1) = x1 + 2 |0|_A() = 1 -_A(x1,x2) = x1 + 1 The next rules are strictly ordered: p1, p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(s(x),s(y),z,u) -> f#(s(x),-(y,x),z,u) and R consists of: r1: -(x,|0|()) -> x r2: -(s(x),s(y)) -> -(x,y) r3: <=(|0|(),y) -> true() r4: <=(s(x),|0|()) -> false() r5: <=(s(x),s(y)) -> <=(x,y) r6: if(true(),x,y) -> x r7: if(false(),x,y) -> y r8: perfectp(|0|()) -> false() r9: perfectp(s(x)) -> f(x,s(|0|()),s(x),s(x)) r10: f(|0|(),y,|0|(),u) -> true() r11: f(|0|(),y,s(z),u) -> false() r12: f(s(x),|0|(),z,u) -> f(x,u,-(z,s(x)),u) r13: f(s(x),s(y),z,u) -> if(<=(x,y),f(s(x),-(y,x),z,u),f(x,u,z,u)) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(s(x),s(y),z,u) -> f#(s(x),-(y,x),z,u) and R consists of: r1: -(x,|0|()) -> x r2: -(s(x),s(y)) -> -(x,y) r3: <=(|0|(),y) -> true() r4: <=(s(x),|0|()) -> false() r5: <=(s(x),s(y)) -> <=(x,y) r6: if(true(),x,y) -> x r7: if(false(),x,y) -> y r8: perfectp(|0|()) -> false() r9: perfectp(s(x)) -> f(x,s(|0|()),s(x),s(x)) r10: f(|0|(),y,|0|(),u) -> true() r11: f(|0|(),y,s(z),u) -> false() r12: f(s(x),|0|(),z,u) -> f(x,u,-(z,s(x)),u) r13: f(s(x),s(y),z,u) -> if(<=(x,y),f(s(x),-(y,x),z,u),f(x,u,z,u)) The set of usable rules consists of r1, r2 Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: |0| > - > s > f# argument filter: pi(f#) = [2] pi(s) = [1] pi(-) = 1 pi(|0|) = [] 2. matrix interpretations: carrier: N^1 order: standard order interpretations: f#_A(x1,x2,x3,x4) = x2 s_A(x1) = x1 + 1 -_A(x1,x2) = x1 + 2 |0|_A() = 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: -#(s(x),s(y)) -> -#(x,y) and R consists of: r1: -(x,|0|()) -> x r2: -(s(x),s(y)) -> -(x,y) r3: <=(|0|(),y) -> true() r4: <=(s(x),|0|()) -> false() r5: <=(s(x),s(y)) -> <=(x,y) r6: if(true(),x,y) -> x r7: if(false(),x,y) -> y r8: perfectp(|0|()) -> false() r9: perfectp(s(x)) -> f(x,s(|0|()),s(x),s(x)) r10: f(|0|(),y,|0|(),u) -> true() r11: f(|0|(),y,s(z),u) -> false() r12: f(s(x),|0|(),z,u) -> f(x,u,-(z,s(x)),u) r13: f(s(x),s(y),z,u) -> if(<=(x,y),f(s(x),-(y,x),z,u),f(x,u,z,u)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: s > -# argument filter: pi(-#) = 2 pi(s) = [1] 2. matrix interpretations: carrier: N^1 order: standard order interpretations: -#_A(x1,x2) = 0 s_A(x1) = x1 + 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: <=#(s(x),s(y)) -> <=#(x,y) and R consists of: r1: -(x,|0|()) -> x r2: -(s(x),s(y)) -> -(x,y) r3: <=(|0|(),y) -> true() r4: <=(s(x),|0|()) -> false() r5: <=(s(x),s(y)) -> <=(x,y) r6: if(true(),x,y) -> x r7: if(false(),x,y) -> y r8: perfectp(|0|()) -> false() r9: perfectp(s(x)) -> f(x,s(|0|()),s(x),s(x)) r10: f(|0|(),y,|0|(),u) -> true() r11: f(|0|(),y,s(z),u) -> false() r12: f(s(x),|0|(),z,u) -> f(x,u,-(z,s(x)),u) r13: f(s(x),s(y),z,u) -> if(<=(x,y),f(s(x),-(y,x),z,u),f(x,u,z,u)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: s > <=# argument filter: pi(<=#) = 2 pi(s) = [1] 2. matrix interpretations: carrier: N^1 order: standard order interpretations: <=#_A(x1,x2) = 0 s_A(x1) = x1 + 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.