YES We show the termination of the TRS R: app(id(),x) -> x app(plus(),|0|()) -> id() app(app(plus(),app(s(),x)),y) -> app(s(),app(app(plus(),x),y)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: app#(app(plus(),app(s(),x)),y) -> app#(s(),app(app(plus(),x),y)) p2: app#(app(plus(),app(s(),x)),y) -> app#(app(plus(),x),y) p3: app#(app(plus(),app(s(),x)),y) -> app#(plus(),x) and R consists of: r1: app(id(),x) -> x r2: app(plus(),|0|()) -> id() r3: app(app(plus(),app(s(),x)),y) -> app(s(),app(app(plus(),x),y)) The estimated dependency graph contains the following SCCs: {p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: app#(app(plus(),app(s(),x)),y) -> app#(app(plus(),x),y) and R consists of: r1: app(id(),x) -> x r2: app(plus(),|0|()) -> id() r3: app(app(plus(),app(s(),x)),y) -> app(s(),app(app(plus(),x),y)) The set of usable rules consists of r2 Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: app > id > |0| > plus > app# > s argument filter: pi(app#) = [1, 2] pi(app) = [1, 2] pi(plus) = [] pi(s) = [] pi(|0|) = [] pi(id) = [] 2. matrix interpretations: carrier: N^1 order: standard order interpretations: app#_A(x1,x2) = x1 + x2 app_A(x1,x2) = x1 + x2 plus_A() = 0 s_A() = 1 |0|_A() = 0 id_A() = 0 The next rules are strictly ordered: p1 r1, r2, r3 We remove them from the problem. Then no dependency pair remains.