YES We show the termination of the TRS R: not(true()) -> false() not(false()) -> true() evenodd(x,|0|()) -> not(evenodd(x,s(|0|()))) evenodd(|0|(),s(|0|())) -> false() evenodd(s(x),s(|0|())) -> evenodd(x,|0|()) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: evenodd#(x,|0|()) -> not#(evenodd(x,s(|0|()))) p2: evenodd#(x,|0|()) -> evenodd#(x,s(|0|())) p3: evenodd#(s(x),s(|0|())) -> evenodd#(x,|0|()) and R consists of: r1: not(true()) -> false() r2: not(false()) -> true() r3: evenodd(x,|0|()) -> not(evenodd(x,s(|0|()))) r4: evenodd(|0|(),s(|0|())) -> false() r5: evenodd(s(x),s(|0|())) -> evenodd(x,|0|()) The estimated dependency graph contains the following SCCs: {p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: evenodd#(x,|0|()) -> evenodd#(x,s(|0|())) p2: evenodd#(s(x),s(|0|())) -> evenodd#(x,|0|()) and R consists of: r1: not(true()) -> false() r2: not(false()) -> true() r3: evenodd(x,|0|()) -> not(evenodd(x,s(|0|()))) r4: evenodd(|0|(),s(|0|())) -> false() r5: evenodd(s(x),s(|0|())) -> evenodd(x,|0|()) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: evenodd# > s > |0| argument filter: pi(evenodd#) = 1 pi(|0|) = [] pi(s) = [1] 2. matrix interpretations: carrier: N^1 order: standard order interpretations: evenodd#_A(x1,x2) = 0 |0|_A() = 1 s_A(x1) = 2 The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: evenodd#(x,|0|()) -> evenodd#(x,s(|0|())) and R consists of: r1: not(true()) -> false() r2: not(false()) -> true() r3: evenodd(x,|0|()) -> not(evenodd(x,s(|0|()))) r4: evenodd(|0|(),s(|0|())) -> false() r5: evenodd(s(x),s(|0|())) -> evenodd(x,|0|()) The estimated dependency graph contains the following SCCs: (no SCCs)