YES We show the termination of the TRS R: minus(x,|0|()) -> x minus(s(x),s(y)) -> minus(x,y) f(|0|()) -> s(|0|()) f(s(x)) -> minus(s(x),g(f(x))) g(|0|()) -> |0|() g(s(x)) -> minus(s(x),f(g(x))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: minus#(s(x),s(y)) -> minus#(x,y) p2: f#(s(x)) -> minus#(s(x),g(f(x))) p3: f#(s(x)) -> g#(f(x)) p4: f#(s(x)) -> f#(x) p5: g#(s(x)) -> minus#(s(x),f(g(x))) p6: g#(s(x)) -> f#(g(x)) p7: g#(s(x)) -> g#(x) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: f(|0|()) -> s(|0|()) r4: f(s(x)) -> minus(s(x),g(f(x))) r5: g(|0|()) -> |0|() r6: g(s(x)) -> minus(s(x),f(g(x))) The estimated dependency graph contains the following SCCs: {p3, p4, p6, p7} {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: g#(s(x)) -> g#(x) p2: g#(s(x)) -> f#(g(x)) p3: f#(s(x)) -> f#(x) p4: f#(s(x)) -> g#(f(x)) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: f(|0|()) -> s(|0|()) r4: f(s(x)) -> minus(s(x),g(f(x))) r5: g(|0|()) -> |0|() r6: g(s(x)) -> minus(s(x),f(g(x))) The set of usable rules consists of r1, r2, r3, r4, r5, r6 Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: f > s > g# > f# > g > |0| > minus argument filter: pi(g#) = 1 pi(s) = 1 pi(f#) = 1 pi(g) = 1 pi(f) = 1 pi(minus) = 1 pi(|0|) = [] 2. matrix interpretations: carrier: N^1 order: standard order interpretations: g#_A(x1) = x1 s_A(x1) = x1 + 5 f#_A(x1) = x1 + 2 g_A(x1) = x1 + 2 f_A(x1) = x1 + 6 minus_A(x1,x2) = x1 + 1 |0|_A() = 1 The next rules are strictly ordered: p1, p2, p3, p4 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: minus#(s(x),s(y)) -> minus#(x,y) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: f(|0|()) -> s(|0|()) r4: f(s(x)) -> minus(s(x),g(f(x))) r5: g(|0|()) -> |0|() r6: g(s(x)) -> minus(s(x),f(g(x))) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: s > minus# argument filter: pi(minus#) = 2 pi(s) = [1] 2. matrix interpretations: carrier: N^1 order: standard order interpretations: minus#_A(x1,x2) = 0 s_A(x1) = x1 + 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.