YES We show the termination of the TRS R: app(nil(),k) -> k app(l,nil()) -> l app(cons(x,l),k) -> cons(x,app(l,k)) sum(cons(x,nil())) -> cons(x,nil()) sum(cons(x,cons(y,l))) -> sum(cons(plus(x,y),l)) sum(app(l,cons(x,cons(y,k)))) -> sum(app(l,sum(cons(x,cons(y,k))))) plus(|0|(),y) -> y plus(s(x),y) -> s(plus(x,y)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: app#(cons(x,l),k) -> app#(l,k) p2: sum#(cons(x,cons(y,l))) -> sum#(cons(plus(x,y),l)) p3: sum#(cons(x,cons(y,l))) -> plus#(x,y) p4: sum#(app(l,cons(x,cons(y,k)))) -> sum#(app(l,sum(cons(x,cons(y,k))))) p5: sum#(app(l,cons(x,cons(y,k)))) -> app#(l,sum(cons(x,cons(y,k)))) p6: sum#(app(l,cons(x,cons(y,k)))) -> sum#(cons(x,cons(y,k))) p7: plus#(s(x),y) -> plus#(x,y) and R consists of: r1: app(nil(),k) -> k r2: app(l,nil()) -> l r3: app(cons(x,l),k) -> cons(x,app(l,k)) r4: sum(cons(x,nil())) -> cons(x,nil()) r5: sum(cons(x,cons(y,l))) -> sum(cons(plus(x,y),l)) r6: sum(app(l,cons(x,cons(y,k)))) -> sum(app(l,sum(cons(x,cons(y,k))))) r7: plus(|0|(),y) -> y r8: plus(s(x),y) -> s(plus(x,y)) The estimated dependency graph contains the following SCCs: {p4} {p1} {p2} {p7} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: sum#(app(l,cons(x,cons(y,k)))) -> sum#(app(l,sum(cons(x,cons(y,k))))) and R consists of: r1: app(nil(),k) -> k r2: app(l,nil()) -> l r3: app(cons(x,l),k) -> cons(x,app(l,k)) r4: sum(cons(x,nil())) -> cons(x,nil()) r5: sum(cons(x,cons(y,l))) -> sum(cons(plus(x,y),l)) r6: sum(app(l,cons(x,cons(y,k)))) -> sum(app(l,sum(cons(x,cons(y,k))))) r7: plus(|0|(),y) -> y r8: plus(s(x),y) -> s(plus(x,y)) The set of usable rules consists of r1, r2, r3, r4, r5, r7, r8 Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: app > cons > nil > sum# > plus > s > |0| > sum argument filter: pi(sum#) = 1 pi(app) = [1, 2] pi(cons) = [2] pi(sum) = 1 pi(nil) = [] pi(plus) = [1, 2] pi(|0|) = [] pi(s) = [] 2. matrix interpretations: carrier: N^1 order: standard order interpretations: sum#_A(x1) = x1 app_A(x1,x2) = x2 + 1 cons_A(x1,x2) = x2 + 3 sum_A(x1) = 5 nil_A() = 1 plus_A(x1,x2) = 1 |0|_A() = 1 s_A(x1) = 2 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: app#(cons(x,l),k) -> app#(l,k) and R consists of: r1: app(nil(),k) -> k r2: app(l,nil()) -> l r3: app(cons(x,l),k) -> cons(x,app(l,k)) r4: sum(cons(x,nil())) -> cons(x,nil()) r5: sum(cons(x,cons(y,l))) -> sum(cons(plus(x,y),l)) r6: sum(app(l,cons(x,cons(y,k)))) -> sum(app(l,sum(cons(x,cons(y,k))))) r7: plus(|0|(),y) -> y r8: plus(s(x),y) -> s(plus(x,y)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: cons > app# argument filter: pi(app#) = [1] pi(cons) = [1, 2] 2. matrix interpretations: carrier: N^1 order: standard order interpretations: app#_A(x1,x2) = x1 cons_A(x1,x2) = x1 + x2 + 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: sum#(cons(x,cons(y,l))) -> sum#(cons(plus(x,y),l)) and R consists of: r1: app(nil(),k) -> k r2: app(l,nil()) -> l r3: app(cons(x,l),k) -> cons(x,app(l,k)) r4: sum(cons(x,nil())) -> cons(x,nil()) r5: sum(cons(x,cons(y,l))) -> sum(cons(plus(x,y),l)) r6: sum(app(l,cons(x,cons(y,k)))) -> sum(app(l,sum(cons(x,cons(y,k))))) r7: plus(|0|(),y) -> y r8: plus(s(x),y) -> s(plus(x,y)) The set of usable rules consists of r7, r8 Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: cons > sum# > s > plus > |0| argument filter: pi(sum#) = [1] pi(cons) = [1, 2] pi(plus) = 2 pi(|0|) = [] pi(s) = 1 2. matrix interpretations: carrier: N^1 order: standard order interpretations: sum#_A(x1) = x1 cons_A(x1,x2) = 1 plus_A(x1,x2) = x2 + 1 |0|_A() = 0 s_A(x1) = x1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: plus#(s(x),y) -> plus#(x,y) and R consists of: r1: app(nil(),k) -> k r2: app(l,nil()) -> l r3: app(cons(x,l),k) -> cons(x,app(l,k)) r4: sum(cons(x,nil())) -> cons(x,nil()) r5: sum(cons(x,cons(y,l))) -> sum(cons(plus(x,y),l)) r6: sum(app(l,cons(x,cons(y,k)))) -> sum(app(l,sum(cons(x,cons(y,k))))) r7: plus(|0|(),y) -> y r8: plus(s(x),y) -> s(plus(x,y)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: s > plus# argument filter: pi(plus#) = 1 pi(s) = [1] 2. matrix interpretations: carrier: N^1 order: standard order interpretations: plus#_A(x1,x2) = x1 s_A(x1) = x1 + 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.