YES We show the termination of the TRS R: active(terms(N)) -> mark(cons(recip(sqr(N)),terms(s(N)))) active(sqr(|0|())) -> mark(|0|()) active(sqr(s(X))) -> mark(s(add(sqr(X),dbl(X)))) active(dbl(|0|())) -> mark(|0|()) active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(|0|(),X)) -> mark(X) active(add(s(X),Y)) -> mark(s(add(X,Y))) active(first(|0|(),X)) -> mark(nil()) active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) active(half(|0|())) -> mark(|0|()) active(half(s(|0|()))) -> mark(|0|()) active(half(s(s(X)))) -> mark(s(half(X))) active(half(dbl(X))) -> mark(X) mark(terms(X)) -> active(terms(mark(X))) mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) mark(recip(X)) -> active(recip(mark(X))) mark(sqr(X)) -> active(sqr(mark(X))) mark(s(X)) -> active(s(mark(X))) mark(|0|()) -> active(|0|()) mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) mark(dbl(X)) -> active(dbl(mark(X))) mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) mark(nil()) -> active(nil()) mark(half(X)) -> active(half(mark(X))) terms(mark(X)) -> terms(X) terms(active(X)) -> terms(X) cons(mark(X1),X2) -> cons(X1,X2) cons(X1,mark(X2)) -> cons(X1,X2) cons(active(X1),X2) -> cons(X1,X2) cons(X1,active(X2)) -> cons(X1,X2) recip(mark(X)) -> recip(X) recip(active(X)) -> recip(X) sqr(mark(X)) -> sqr(X) sqr(active(X)) -> sqr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) add(mark(X1),X2) -> add(X1,X2) add(X1,mark(X2)) -> add(X1,X2) add(active(X1),X2) -> add(X1,X2) add(X1,active(X2)) -> add(X1,X2) dbl(mark(X)) -> dbl(X) dbl(active(X)) -> dbl(X) first(mark(X1),X2) -> first(X1,X2) first(X1,mark(X2)) -> first(X1,X2) first(active(X1),X2) -> first(X1,X2) first(X1,active(X2)) -> first(X1,X2) half(mark(X)) -> half(X) half(active(X)) -> half(X) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(terms(N)) -> mark#(cons(recip(sqr(N)),terms(s(N)))) p2: active#(terms(N)) -> cons#(recip(sqr(N)),terms(s(N))) p3: active#(terms(N)) -> recip#(sqr(N)) p4: active#(terms(N)) -> sqr#(N) p5: active#(terms(N)) -> terms#(s(N)) p6: active#(terms(N)) -> s#(N) p7: active#(sqr(|0|())) -> mark#(|0|()) p8: active#(sqr(s(X))) -> mark#(s(add(sqr(X),dbl(X)))) p9: active#(sqr(s(X))) -> s#(add(sqr(X),dbl(X))) p10: active#(sqr(s(X))) -> add#(sqr(X),dbl(X)) p11: active#(sqr(s(X))) -> sqr#(X) p12: active#(sqr(s(X))) -> dbl#(X) p13: active#(dbl(|0|())) -> mark#(|0|()) p14: active#(dbl(s(X))) -> mark#(s(s(dbl(X)))) p15: active#(dbl(s(X))) -> s#(s(dbl(X))) p16: active#(dbl(s(X))) -> s#(dbl(X)) p17: active#(dbl(s(X))) -> dbl#(X) p18: active#(add(|0|(),X)) -> mark#(X) p19: active#(add(s(X),Y)) -> mark#(s(add(X,Y))) p20: active#(add(s(X),Y)) -> s#(add(X,Y)) p21: active#(add(s(X),Y)) -> add#(X,Y) p22: active#(first(|0|(),X)) -> mark#(nil()) p23: active#(first(s(X),cons(Y,Z))) -> mark#(cons(Y,first(X,Z))) p24: active#(first(s(X),cons(Y,Z))) -> cons#(Y,first(X,Z)) p25: active#(first(s(X),cons(Y,Z))) -> first#(X,Z) p26: active#(half(|0|())) -> mark#(|0|()) p27: active#(half(s(|0|()))) -> mark#(|0|()) p28: active#(half(s(s(X)))) -> mark#(s(half(X))) p29: active#(half(s(s(X)))) -> s#(half(X)) p30: active#(half(s(s(X)))) -> half#(X) p31: active#(half(dbl(X))) -> mark#(X) p32: mark#(terms(X)) -> active#(terms(mark(X))) p33: mark#(terms(X)) -> terms#(mark(X)) p34: mark#(terms(X)) -> mark#(X) p35: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p36: mark#(cons(X1,X2)) -> cons#(mark(X1),X2) p37: mark#(cons(X1,X2)) -> mark#(X1) p38: mark#(recip(X)) -> active#(recip(mark(X))) p39: mark#(recip(X)) -> recip#(mark(X)) p40: mark#(recip(X)) -> mark#(X) p41: mark#(sqr(X)) -> active#(sqr(mark(X))) p42: mark#(sqr(X)) -> sqr#(mark(X)) p43: mark#(sqr(X)) -> mark#(X) p44: mark#(s(X)) -> active#(s(mark(X))) p45: mark#(s(X)) -> s#(mark(X)) p46: mark#(s(X)) -> mark#(X) p47: mark#(|0|()) -> active#(|0|()) p48: mark#(add(X1,X2)) -> active#(add(mark(X1),mark(X2))) p49: mark#(add(X1,X2)) -> add#(mark(X1),mark(X2)) p50: mark#(add(X1,X2)) -> mark#(X1) p51: mark#(add(X1,X2)) -> mark#(X2) p52: mark#(dbl(X)) -> active#(dbl(mark(X))) p53: mark#(dbl(X)) -> dbl#(mark(X)) p54: mark#(dbl(X)) -> mark#(X) p55: mark#(first(X1,X2)) -> active#(first(mark(X1),mark(X2))) p56: mark#(first(X1,X2)) -> first#(mark(X1),mark(X2)) p57: mark#(first(X1,X2)) -> mark#(X1) p58: mark#(first(X1,X2)) -> mark#(X2) p59: mark#(nil()) -> active#(nil()) p60: mark#(half(X)) -> active#(half(mark(X))) p61: mark#(half(X)) -> half#(mark(X)) p62: mark#(half(X)) -> mark#(X) p63: terms#(mark(X)) -> terms#(X) p64: terms#(active(X)) -> terms#(X) p65: cons#(mark(X1),X2) -> cons#(X1,X2) p66: cons#(X1,mark(X2)) -> cons#(X1,X2) p67: cons#(active(X1),X2) -> cons#(X1,X2) p68: cons#(X1,active(X2)) -> cons#(X1,X2) p69: recip#(mark(X)) -> recip#(X) p70: recip#(active(X)) -> recip#(X) p71: sqr#(mark(X)) -> sqr#(X) p72: sqr#(active(X)) -> sqr#(X) p73: s#(mark(X)) -> s#(X) p74: s#(active(X)) -> s#(X) p75: add#(mark(X1),X2) -> add#(X1,X2) p76: add#(X1,mark(X2)) -> add#(X1,X2) p77: add#(active(X1),X2) -> add#(X1,X2) p78: add#(X1,active(X2)) -> add#(X1,X2) p79: dbl#(mark(X)) -> dbl#(X) p80: dbl#(active(X)) -> dbl#(X) p81: first#(mark(X1),X2) -> first#(X1,X2) p82: first#(X1,mark(X2)) -> first#(X1,X2) p83: first#(active(X1),X2) -> first#(X1,X2) p84: first#(X1,active(X2)) -> first#(X1,X2) p85: half#(mark(X)) -> half#(X) p86: half#(active(X)) -> half#(X) and R consists of: r1: active(terms(N)) -> mark(cons(recip(sqr(N)),terms(s(N)))) r2: active(sqr(|0|())) -> mark(|0|()) r3: active(sqr(s(X))) -> mark(s(add(sqr(X),dbl(X)))) r4: active(dbl(|0|())) -> mark(|0|()) r5: active(dbl(s(X))) -> mark(s(s(dbl(X)))) r6: active(add(|0|(),X)) -> mark(X) r7: active(add(s(X),Y)) -> mark(s(add(X,Y))) r8: active(first(|0|(),X)) -> mark(nil()) r9: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r10: active(half(|0|())) -> mark(|0|()) r11: active(half(s(|0|()))) -> mark(|0|()) r12: active(half(s(s(X)))) -> mark(s(half(X))) r13: active(half(dbl(X))) -> mark(X) r14: mark(terms(X)) -> active(terms(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r16: mark(recip(X)) -> active(recip(mark(X))) r17: mark(sqr(X)) -> active(sqr(mark(X))) r18: mark(s(X)) -> active(s(mark(X))) r19: mark(|0|()) -> active(|0|()) r20: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r21: mark(dbl(X)) -> active(dbl(mark(X))) r22: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r23: mark(nil()) -> active(nil()) r24: mark(half(X)) -> active(half(mark(X))) r25: terms(mark(X)) -> terms(X) r26: terms(active(X)) -> terms(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: recip(mark(X)) -> recip(X) r32: recip(active(X)) -> recip(X) r33: sqr(mark(X)) -> sqr(X) r34: sqr(active(X)) -> sqr(X) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: add(mark(X1),X2) -> add(X1,X2) r38: add(X1,mark(X2)) -> add(X1,X2) r39: add(active(X1),X2) -> add(X1,X2) r40: add(X1,active(X2)) -> add(X1,X2) r41: dbl(mark(X)) -> dbl(X) r42: dbl(active(X)) -> dbl(X) r43: first(mark(X1),X2) -> first(X1,X2) r44: first(X1,mark(X2)) -> first(X1,X2) r45: first(active(X1),X2) -> first(X1,X2) r46: first(X1,active(X2)) -> first(X1,X2) r47: half(mark(X)) -> half(X) r48: half(active(X)) -> half(X) The estimated dependency graph contains the following SCCs: {p1, p8, p14, p18, p19, p23, p28, p31, p32, p34, p35, p37, p38, p40, p41, p43, p44, p46, p48, p50, p51, p52, p54, p55, p57, p58, p60, p62} {p65, p66, p67, p68} {p69, p70} {p71, p72} {p63, p64} {p73, p74} {p75, p76, p77, p78} {p79, p80} {p81, p82, p83, p84} {p85, p86} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(terms(N)) -> mark#(cons(recip(sqr(N)),terms(s(N)))) p2: mark#(half(X)) -> mark#(X) p3: mark#(half(X)) -> active#(half(mark(X))) p4: active#(half(dbl(X))) -> mark#(X) p5: mark#(first(X1,X2)) -> mark#(X2) p6: mark#(first(X1,X2)) -> mark#(X1) p7: mark#(first(X1,X2)) -> active#(first(mark(X1),mark(X2))) p8: active#(half(s(s(X)))) -> mark#(s(half(X))) p9: mark#(dbl(X)) -> mark#(X) p10: mark#(dbl(X)) -> active#(dbl(mark(X))) p11: active#(first(s(X),cons(Y,Z))) -> mark#(cons(Y,first(X,Z))) p12: mark#(add(X1,X2)) -> mark#(X2) p13: mark#(add(X1,X2)) -> mark#(X1) p14: mark#(add(X1,X2)) -> active#(add(mark(X1),mark(X2))) p15: active#(add(s(X),Y)) -> mark#(s(add(X,Y))) p16: mark#(s(X)) -> mark#(X) p17: mark#(s(X)) -> active#(s(mark(X))) p18: active#(add(|0|(),X)) -> mark#(X) p19: mark#(sqr(X)) -> mark#(X) p20: mark#(sqr(X)) -> active#(sqr(mark(X))) p21: active#(dbl(s(X))) -> mark#(s(s(dbl(X)))) p22: mark#(recip(X)) -> mark#(X) p23: mark#(recip(X)) -> active#(recip(mark(X))) p24: active#(sqr(s(X))) -> mark#(s(add(sqr(X),dbl(X)))) p25: mark#(cons(X1,X2)) -> mark#(X1) p26: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p27: mark#(terms(X)) -> mark#(X) p28: mark#(terms(X)) -> active#(terms(mark(X))) and R consists of: r1: active(terms(N)) -> mark(cons(recip(sqr(N)),terms(s(N)))) r2: active(sqr(|0|())) -> mark(|0|()) r3: active(sqr(s(X))) -> mark(s(add(sqr(X),dbl(X)))) r4: active(dbl(|0|())) -> mark(|0|()) r5: active(dbl(s(X))) -> mark(s(s(dbl(X)))) r6: active(add(|0|(),X)) -> mark(X) r7: active(add(s(X),Y)) -> mark(s(add(X,Y))) r8: active(first(|0|(),X)) -> mark(nil()) r9: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r10: active(half(|0|())) -> mark(|0|()) r11: active(half(s(|0|()))) -> mark(|0|()) r12: active(half(s(s(X)))) -> mark(s(half(X))) r13: active(half(dbl(X))) -> mark(X) r14: mark(terms(X)) -> active(terms(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r16: mark(recip(X)) -> active(recip(mark(X))) r17: mark(sqr(X)) -> active(sqr(mark(X))) r18: mark(s(X)) -> active(s(mark(X))) r19: mark(|0|()) -> active(|0|()) r20: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r21: mark(dbl(X)) -> active(dbl(mark(X))) r22: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r23: mark(nil()) -> active(nil()) r24: mark(half(X)) -> active(half(mark(X))) r25: terms(mark(X)) -> terms(X) r26: terms(active(X)) -> terms(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: recip(mark(X)) -> recip(X) r32: recip(active(X)) -> recip(X) r33: sqr(mark(X)) -> sqr(X) r34: sqr(active(X)) -> sqr(X) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: add(mark(X1),X2) -> add(X1,X2) r38: add(X1,mark(X2)) -> add(X1,X2) r39: add(active(X1),X2) -> add(X1,X2) r40: add(X1,active(X2)) -> add(X1,X2) r41: dbl(mark(X)) -> dbl(X) r42: dbl(active(X)) -> dbl(X) r43: first(mark(X1),X2) -> first(X1,X2) r44: first(X1,mark(X2)) -> first(X1,X2) r45: first(active(X1),X2) -> first(X1,X2) r46: first(X1,active(X2)) -> first(X1,X2) r47: half(mark(X)) -> half(X) r48: half(active(X)) -> half(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48 Take the reduction pair: lexicographic path order with precedence: precedence: half > terms > sqr > dbl > add > mark > |0| > first > mark# > s > nil > recip > cons > active# > active argument filter: pi(active#) = 1 pi(terms) = [1] pi(mark#) = [1] pi(cons) = [1] pi(recip) = [1] pi(sqr) = [1] pi(s) = [1] pi(half) = [1] pi(mark) = 1 pi(dbl) = [1] pi(first) = [1, 2] pi(add) = [1, 2] pi(|0|) = [] pi(active) = 1 pi(nil) = [] The next rules are strictly ordered: p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21, p22, p23, p24, p25, p26, p27, p28 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: cons#(mark(X1),X2) -> cons#(X1,X2) p2: cons#(X1,active(X2)) -> cons#(X1,X2) p3: cons#(active(X1),X2) -> cons#(X1,X2) p4: cons#(X1,mark(X2)) -> cons#(X1,X2) and R consists of: r1: active(terms(N)) -> mark(cons(recip(sqr(N)),terms(s(N)))) r2: active(sqr(|0|())) -> mark(|0|()) r3: active(sqr(s(X))) -> mark(s(add(sqr(X),dbl(X)))) r4: active(dbl(|0|())) -> mark(|0|()) r5: active(dbl(s(X))) -> mark(s(s(dbl(X)))) r6: active(add(|0|(),X)) -> mark(X) r7: active(add(s(X),Y)) -> mark(s(add(X,Y))) r8: active(first(|0|(),X)) -> mark(nil()) r9: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r10: active(half(|0|())) -> mark(|0|()) r11: active(half(s(|0|()))) -> mark(|0|()) r12: active(half(s(s(X)))) -> mark(s(half(X))) r13: active(half(dbl(X))) -> mark(X) r14: mark(terms(X)) -> active(terms(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r16: mark(recip(X)) -> active(recip(mark(X))) r17: mark(sqr(X)) -> active(sqr(mark(X))) r18: mark(s(X)) -> active(s(mark(X))) r19: mark(|0|()) -> active(|0|()) r20: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r21: mark(dbl(X)) -> active(dbl(mark(X))) r22: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r23: mark(nil()) -> active(nil()) r24: mark(half(X)) -> active(half(mark(X))) r25: terms(mark(X)) -> terms(X) r26: terms(active(X)) -> terms(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: recip(mark(X)) -> recip(X) r32: recip(active(X)) -> recip(X) r33: sqr(mark(X)) -> sqr(X) r34: sqr(active(X)) -> sqr(X) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: add(mark(X1),X2) -> add(X1,X2) r38: add(X1,mark(X2)) -> add(X1,X2) r39: add(active(X1),X2) -> add(X1,X2) r40: add(X1,active(X2)) -> add(X1,X2) r41: dbl(mark(X)) -> dbl(X) r42: dbl(active(X)) -> dbl(X) r43: first(mark(X1),X2) -> first(X1,X2) r44: first(X1,mark(X2)) -> first(X1,X2) r45: first(active(X1),X2) -> first(X1,X2) r46: first(X1,active(X2)) -> first(X1,X2) r47: half(mark(X)) -> half(X) r48: half(active(X)) -> half(X) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic path order with precedence: precedence: cons# > active > mark argument filter: pi(cons#) = 2 pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p2, p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: cons#(mark(X1),X2) -> cons#(X1,X2) p2: cons#(active(X1),X2) -> cons#(X1,X2) and R consists of: r1: active(terms(N)) -> mark(cons(recip(sqr(N)),terms(s(N)))) r2: active(sqr(|0|())) -> mark(|0|()) r3: active(sqr(s(X))) -> mark(s(add(sqr(X),dbl(X)))) r4: active(dbl(|0|())) -> mark(|0|()) r5: active(dbl(s(X))) -> mark(s(s(dbl(X)))) r6: active(add(|0|(),X)) -> mark(X) r7: active(add(s(X),Y)) -> mark(s(add(X,Y))) r8: active(first(|0|(),X)) -> mark(nil()) r9: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r10: active(half(|0|())) -> mark(|0|()) r11: active(half(s(|0|()))) -> mark(|0|()) r12: active(half(s(s(X)))) -> mark(s(half(X))) r13: active(half(dbl(X))) -> mark(X) r14: mark(terms(X)) -> active(terms(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r16: mark(recip(X)) -> active(recip(mark(X))) r17: mark(sqr(X)) -> active(sqr(mark(X))) r18: mark(s(X)) -> active(s(mark(X))) r19: mark(|0|()) -> active(|0|()) r20: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r21: mark(dbl(X)) -> active(dbl(mark(X))) r22: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r23: mark(nil()) -> active(nil()) r24: mark(half(X)) -> active(half(mark(X))) r25: terms(mark(X)) -> terms(X) r26: terms(active(X)) -> terms(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: recip(mark(X)) -> recip(X) r32: recip(active(X)) -> recip(X) r33: sqr(mark(X)) -> sqr(X) r34: sqr(active(X)) -> sqr(X) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: add(mark(X1),X2) -> add(X1,X2) r38: add(X1,mark(X2)) -> add(X1,X2) r39: add(active(X1),X2) -> add(X1,X2) r40: add(X1,active(X2)) -> add(X1,X2) r41: dbl(mark(X)) -> dbl(X) r42: dbl(active(X)) -> dbl(X) r43: first(mark(X1),X2) -> first(X1,X2) r44: first(X1,mark(X2)) -> first(X1,X2) r45: first(active(X1),X2) -> first(X1,X2) r46: first(X1,active(X2)) -> first(X1,X2) r47: half(mark(X)) -> half(X) r48: half(active(X)) -> half(X) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: cons#(mark(X1),X2) -> cons#(X1,X2) p2: cons#(active(X1),X2) -> cons#(X1,X2) and R consists of: r1: active(terms(N)) -> mark(cons(recip(sqr(N)),terms(s(N)))) r2: active(sqr(|0|())) -> mark(|0|()) r3: active(sqr(s(X))) -> mark(s(add(sqr(X),dbl(X)))) r4: active(dbl(|0|())) -> mark(|0|()) r5: active(dbl(s(X))) -> mark(s(s(dbl(X)))) r6: active(add(|0|(),X)) -> mark(X) r7: active(add(s(X),Y)) -> mark(s(add(X,Y))) r8: active(first(|0|(),X)) -> mark(nil()) r9: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r10: active(half(|0|())) -> mark(|0|()) r11: active(half(s(|0|()))) -> mark(|0|()) r12: active(half(s(s(X)))) -> mark(s(half(X))) r13: active(half(dbl(X))) -> mark(X) r14: mark(terms(X)) -> active(terms(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r16: mark(recip(X)) -> active(recip(mark(X))) r17: mark(sqr(X)) -> active(sqr(mark(X))) r18: mark(s(X)) -> active(s(mark(X))) r19: mark(|0|()) -> active(|0|()) r20: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r21: mark(dbl(X)) -> active(dbl(mark(X))) r22: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r23: mark(nil()) -> active(nil()) r24: mark(half(X)) -> active(half(mark(X))) r25: terms(mark(X)) -> terms(X) r26: terms(active(X)) -> terms(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: recip(mark(X)) -> recip(X) r32: recip(active(X)) -> recip(X) r33: sqr(mark(X)) -> sqr(X) r34: sqr(active(X)) -> sqr(X) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: add(mark(X1),X2) -> add(X1,X2) r38: add(X1,mark(X2)) -> add(X1,X2) r39: add(active(X1),X2) -> add(X1,X2) r40: add(X1,active(X2)) -> add(X1,X2) r41: dbl(mark(X)) -> dbl(X) r42: dbl(active(X)) -> dbl(X) r43: first(mark(X1),X2) -> first(X1,X2) r44: first(X1,mark(X2)) -> first(X1,X2) r45: first(active(X1),X2) -> first(X1,X2) r46: first(X1,active(X2)) -> first(X1,X2) r47: half(mark(X)) -> half(X) r48: half(active(X)) -> half(X) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic path order with precedence: precedence: cons# > active > mark argument filter: pi(cons#) = 1 pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: recip#(mark(X)) -> recip#(X) p2: recip#(active(X)) -> recip#(X) and R consists of: r1: active(terms(N)) -> mark(cons(recip(sqr(N)),terms(s(N)))) r2: active(sqr(|0|())) -> mark(|0|()) r3: active(sqr(s(X))) -> mark(s(add(sqr(X),dbl(X)))) r4: active(dbl(|0|())) -> mark(|0|()) r5: active(dbl(s(X))) -> mark(s(s(dbl(X)))) r6: active(add(|0|(),X)) -> mark(X) r7: active(add(s(X),Y)) -> mark(s(add(X,Y))) r8: active(first(|0|(),X)) -> mark(nil()) r9: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r10: active(half(|0|())) -> mark(|0|()) r11: active(half(s(|0|()))) -> mark(|0|()) r12: active(half(s(s(X)))) -> mark(s(half(X))) r13: active(half(dbl(X))) -> mark(X) r14: mark(terms(X)) -> active(terms(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r16: mark(recip(X)) -> active(recip(mark(X))) r17: mark(sqr(X)) -> active(sqr(mark(X))) r18: mark(s(X)) -> active(s(mark(X))) r19: mark(|0|()) -> active(|0|()) r20: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r21: mark(dbl(X)) -> active(dbl(mark(X))) r22: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r23: mark(nil()) -> active(nil()) r24: mark(half(X)) -> active(half(mark(X))) r25: terms(mark(X)) -> terms(X) r26: terms(active(X)) -> terms(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: recip(mark(X)) -> recip(X) r32: recip(active(X)) -> recip(X) r33: sqr(mark(X)) -> sqr(X) r34: sqr(active(X)) -> sqr(X) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: add(mark(X1),X2) -> add(X1,X2) r38: add(X1,mark(X2)) -> add(X1,X2) r39: add(active(X1),X2) -> add(X1,X2) r40: add(X1,active(X2)) -> add(X1,X2) r41: dbl(mark(X)) -> dbl(X) r42: dbl(active(X)) -> dbl(X) r43: first(mark(X1),X2) -> first(X1,X2) r44: first(X1,mark(X2)) -> first(X1,X2) r45: first(active(X1),X2) -> first(X1,X2) r46: first(X1,active(X2)) -> first(X1,X2) r47: half(mark(X)) -> half(X) r48: half(active(X)) -> half(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic path order with precedence: precedence: recip# > active > mark argument filter: pi(recip#) = 1 pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: sqr#(mark(X)) -> sqr#(X) p2: sqr#(active(X)) -> sqr#(X) and R consists of: r1: active(terms(N)) -> mark(cons(recip(sqr(N)),terms(s(N)))) r2: active(sqr(|0|())) -> mark(|0|()) r3: active(sqr(s(X))) -> mark(s(add(sqr(X),dbl(X)))) r4: active(dbl(|0|())) -> mark(|0|()) r5: active(dbl(s(X))) -> mark(s(s(dbl(X)))) r6: active(add(|0|(),X)) -> mark(X) r7: active(add(s(X),Y)) -> mark(s(add(X,Y))) r8: active(first(|0|(),X)) -> mark(nil()) r9: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r10: active(half(|0|())) -> mark(|0|()) r11: active(half(s(|0|()))) -> mark(|0|()) r12: active(half(s(s(X)))) -> mark(s(half(X))) r13: active(half(dbl(X))) -> mark(X) r14: mark(terms(X)) -> active(terms(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r16: mark(recip(X)) -> active(recip(mark(X))) r17: mark(sqr(X)) -> active(sqr(mark(X))) r18: mark(s(X)) -> active(s(mark(X))) r19: mark(|0|()) -> active(|0|()) r20: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r21: mark(dbl(X)) -> active(dbl(mark(X))) r22: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r23: mark(nil()) -> active(nil()) r24: mark(half(X)) -> active(half(mark(X))) r25: terms(mark(X)) -> terms(X) r26: terms(active(X)) -> terms(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: recip(mark(X)) -> recip(X) r32: recip(active(X)) -> recip(X) r33: sqr(mark(X)) -> sqr(X) r34: sqr(active(X)) -> sqr(X) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: add(mark(X1),X2) -> add(X1,X2) r38: add(X1,mark(X2)) -> add(X1,X2) r39: add(active(X1),X2) -> add(X1,X2) r40: add(X1,active(X2)) -> add(X1,X2) r41: dbl(mark(X)) -> dbl(X) r42: dbl(active(X)) -> dbl(X) r43: first(mark(X1),X2) -> first(X1,X2) r44: first(X1,mark(X2)) -> first(X1,X2) r45: first(active(X1),X2) -> first(X1,X2) r46: first(X1,active(X2)) -> first(X1,X2) r47: half(mark(X)) -> half(X) r48: half(active(X)) -> half(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic path order with precedence: precedence: sqr# > active > mark argument filter: pi(sqr#) = 1 pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: terms#(mark(X)) -> terms#(X) p2: terms#(active(X)) -> terms#(X) and R consists of: r1: active(terms(N)) -> mark(cons(recip(sqr(N)),terms(s(N)))) r2: active(sqr(|0|())) -> mark(|0|()) r3: active(sqr(s(X))) -> mark(s(add(sqr(X),dbl(X)))) r4: active(dbl(|0|())) -> mark(|0|()) r5: active(dbl(s(X))) -> mark(s(s(dbl(X)))) r6: active(add(|0|(),X)) -> mark(X) r7: active(add(s(X),Y)) -> mark(s(add(X,Y))) r8: active(first(|0|(),X)) -> mark(nil()) r9: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r10: active(half(|0|())) -> mark(|0|()) r11: active(half(s(|0|()))) -> mark(|0|()) r12: active(half(s(s(X)))) -> mark(s(half(X))) r13: active(half(dbl(X))) -> mark(X) r14: mark(terms(X)) -> active(terms(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r16: mark(recip(X)) -> active(recip(mark(X))) r17: mark(sqr(X)) -> active(sqr(mark(X))) r18: mark(s(X)) -> active(s(mark(X))) r19: mark(|0|()) -> active(|0|()) r20: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r21: mark(dbl(X)) -> active(dbl(mark(X))) r22: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r23: mark(nil()) -> active(nil()) r24: mark(half(X)) -> active(half(mark(X))) r25: terms(mark(X)) -> terms(X) r26: terms(active(X)) -> terms(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: recip(mark(X)) -> recip(X) r32: recip(active(X)) -> recip(X) r33: sqr(mark(X)) -> sqr(X) r34: sqr(active(X)) -> sqr(X) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: add(mark(X1),X2) -> add(X1,X2) r38: add(X1,mark(X2)) -> add(X1,X2) r39: add(active(X1),X2) -> add(X1,X2) r40: add(X1,active(X2)) -> add(X1,X2) r41: dbl(mark(X)) -> dbl(X) r42: dbl(active(X)) -> dbl(X) r43: first(mark(X1),X2) -> first(X1,X2) r44: first(X1,mark(X2)) -> first(X1,X2) r45: first(active(X1),X2) -> first(X1,X2) r46: first(X1,active(X2)) -> first(X1,X2) r47: half(mark(X)) -> half(X) r48: half(active(X)) -> half(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic path order with precedence: precedence: terms# > active > mark argument filter: pi(terms#) = 1 pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: s#(mark(X)) -> s#(X) p2: s#(active(X)) -> s#(X) and R consists of: r1: active(terms(N)) -> mark(cons(recip(sqr(N)),terms(s(N)))) r2: active(sqr(|0|())) -> mark(|0|()) r3: active(sqr(s(X))) -> mark(s(add(sqr(X),dbl(X)))) r4: active(dbl(|0|())) -> mark(|0|()) r5: active(dbl(s(X))) -> mark(s(s(dbl(X)))) r6: active(add(|0|(),X)) -> mark(X) r7: active(add(s(X),Y)) -> mark(s(add(X,Y))) r8: active(first(|0|(),X)) -> mark(nil()) r9: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r10: active(half(|0|())) -> mark(|0|()) r11: active(half(s(|0|()))) -> mark(|0|()) r12: active(half(s(s(X)))) -> mark(s(half(X))) r13: active(half(dbl(X))) -> mark(X) r14: mark(terms(X)) -> active(terms(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r16: mark(recip(X)) -> active(recip(mark(X))) r17: mark(sqr(X)) -> active(sqr(mark(X))) r18: mark(s(X)) -> active(s(mark(X))) r19: mark(|0|()) -> active(|0|()) r20: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r21: mark(dbl(X)) -> active(dbl(mark(X))) r22: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r23: mark(nil()) -> active(nil()) r24: mark(half(X)) -> active(half(mark(X))) r25: terms(mark(X)) -> terms(X) r26: terms(active(X)) -> terms(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: recip(mark(X)) -> recip(X) r32: recip(active(X)) -> recip(X) r33: sqr(mark(X)) -> sqr(X) r34: sqr(active(X)) -> sqr(X) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: add(mark(X1),X2) -> add(X1,X2) r38: add(X1,mark(X2)) -> add(X1,X2) r39: add(active(X1),X2) -> add(X1,X2) r40: add(X1,active(X2)) -> add(X1,X2) r41: dbl(mark(X)) -> dbl(X) r42: dbl(active(X)) -> dbl(X) r43: first(mark(X1),X2) -> first(X1,X2) r44: first(X1,mark(X2)) -> first(X1,X2) r45: first(active(X1),X2) -> first(X1,X2) r46: first(X1,active(X2)) -> first(X1,X2) r47: half(mark(X)) -> half(X) r48: half(active(X)) -> half(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic path order with precedence: precedence: s# > active > mark argument filter: pi(s#) = 1 pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: add#(mark(X1),X2) -> add#(X1,X2) p2: add#(X1,active(X2)) -> add#(X1,X2) p3: add#(active(X1),X2) -> add#(X1,X2) p4: add#(X1,mark(X2)) -> add#(X1,X2) and R consists of: r1: active(terms(N)) -> mark(cons(recip(sqr(N)),terms(s(N)))) r2: active(sqr(|0|())) -> mark(|0|()) r3: active(sqr(s(X))) -> mark(s(add(sqr(X),dbl(X)))) r4: active(dbl(|0|())) -> mark(|0|()) r5: active(dbl(s(X))) -> mark(s(s(dbl(X)))) r6: active(add(|0|(),X)) -> mark(X) r7: active(add(s(X),Y)) -> mark(s(add(X,Y))) r8: active(first(|0|(),X)) -> mark(nil()) r9: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r10: active(half(|0|())) -> mark(|0|()) r11: active(half(s(|0|()))) -> mark(|0|()) r12: active(half(s(s(X)))) -> mark(s(half(X))) r13: active(half(dbl(X))) -> mark(X) r14: mark(terms(X)) -> active(terms(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r16: mark(recip(X)) -> active(recip(mark(X))) r17: mark(sqr(X)) -> active(sqr(mark(X))) r18: mark(s(X)) -> active(s(mark(X))) r19: mark(|0|()) -> active(|0|()) r20: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r21: mark(dbl(X)) -> active(dbl(mark(X))) r22: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r23: mark(nil()) -> active(nil()) r24: mark(half(X)) -> active(half(mark(X))) r25: terms(mark(X)) -> terms(X) r26: terms(active(X)) -> terms(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: recip(mark(X)) -> recip(X) r32: recip(active(X)) -> recip(X) r33: sqr(mark(X)) -> sqr(X) r34: sqr(active(X)) -> sqr(X) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: add(mark(X1),X2) -> add(X1,X2) r38: add(X1,mark(X2)) -> add(X1,X2) r39: add(active(X1),X2) -> add(X1,X2) r40: add(X1,active(X2)) -> add(X1,X2) r41: dbl(mark(X)) -> dbl(X) r42: dbl(active(X)) -> dbl(X) r43: first(mark(X1),X2) -> first(X1,X2) r44: first(X1,mark(X2)) -> first(X1,X2) r45: first(active(X1),X2) -> first(X1,X2) r46: first(X1,active(X2)) -> first(X1,X2) r47: half(mark(X)) -> half(X) r48: half(active(X)) -> half(X) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic path order with precedence: precedence: add# > active > mark argument filter: pi(add#) = 2 pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p2, p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: add#(mark(X1),X2) -> add#(X1,X2) p2: add#(active(X1),X2) -> add#(X1,X2) and R consists of: r1: active(terms(N)) -> mark(cons(recip(sqr(N)),terms(s(N)))) r2: active(sqr(|0|())) -> mark(|0|()) r3: active(sqr(s(X))) -> mark(s(add(sqr(X),dbl(X)))) r4: active(dbl(|0|())) -> mark(|0|()) r5: active(dbl(s(X))) -> mark(s(s(dbl(X)))) r6: active(add(|0|(),X)) -> mark(X) r7: active(add(s(X),Y)) -> mark(s(add(X,Y))) r8: active(first(|0|(),X)) -> mark(nil()) r9: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r10: active(half(|0|())) -> mark(|0|()) r11: active(half(s(|0|()))) -> mark(|0|()) r12: active(half(s(s(X)))) -> mark(s(half(X))) r13: active(half(dbl(X))) -> mark(X) r14: mark(terms(X)) -> active(terms(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r16: mark(recip(X)) -> active(recip(mark(X))) r17: mark(sqr(X)) -> active(sqr(mark(X))) r18: mark(s(X)) -> active(s(mark(X))) r19: mark(|0|()) -> active(|0|()) r20: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r21: mark(dbl(X)) -> active(dbl(mark(X))) r22: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r23: mark(nil()) -> active(nil()) r24: mark(half(X)) -> active(half(mark(X))) r25: terms(mark(X)) -> terms(X) r26: terms(active(X)) -> terms(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: recip(mark(X)) -> recip(X) r32: recip(active(X)) -> recip(X) r33: sqr(mark(X)) -> sqr(X) r34: sqr(active(X)) -> sqr(X) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: add(mark(X1),X2) -> add(X1,X2) r38: add(X1,mark(X2)) -> add(X1,X2) r39: add(active(X1),X2) -> add(X1,X2) r40: add(X1,active(X2)) -> add(X1,X2) r41: dbl(mark(X)) -> dbl(X) r42: dbl(active(X)) -> dbl(X) r43: first(mark(X1),X2) -> first(X1,X2) r44: first(X1,mark(X2)) -> first(X1,X2) r45: first(active(X1),X2) -> first(X1,X2) r46: first(X1,active(X2)) -> first(X1,X2) r47: half(mark(X)) -> half(X) r48: half(active(X)) -> half(X) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: add#(mark(X1),X2) -> add#(X1,X2) p2: add#(active(X1),X2) -> add#(X1,X2) and R consists of: r1: active(terms(N)) -> mark(cons(recip(sqr(N)),terms(s(N)))) r2: active(sqr(|0|())) -> mark(|0|()) r3: active(sqr(s(X))) -> mark(s(add(sqr(X),dbl(X)))) r4: active(dbl(|0|())) -> mark(|0|()) r5: active(dbl(s(X))) -> mark(s(s(dbl(X)))) r6: active(add(|0|(),X)) -> mark(X) r7: active(add(s(X),Y)) -> mark(s(add(X,Y))) r8: active(first(|0|(),X)) -> mark(nil()) r9: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r10: active(half(|0|())) -> mark(|0|()) r11: active(half(s(|0|()))) -> mark(|0|()) r12: active(half(s(s(X)))) -> mark(s(half(X))) r13: active(half(dbl(X))) -> mark(X) r14: mark(terms(X)) -> active(terms(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r16: mark(recip(X)) -> active(recip(mark(X))) r17: mark(sqr(X)) -> active(sqr(mark(X))) r18: mark(s(X)) -> active(s(mark(X))) r19: mark(|0|()) -> active(|0|()) r20: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r21: mark(dbl(X)) -> active(dbl(mark(X))) r22: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r23: mark(nil()) -> active(nil()) r24: mark(half(X)) -> active(half(mark(X))) r25: terms(mark(X)) -> terms(X) r26: terms(active(X)) -> terms(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: recip(mark(X)) -> recip(X) r32: recip(active(X)) -> recip(X) r33: sqr(mark(X)) -> sqr(X) r34: sqr(active(X)) -> sqr(X) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: add(mark(X1),X2) -> add(X1,X2) r38: add(X1,mark(X2)) -> add(X1,X2) r39: add(active(X1),X2) -> add(X1,X2) r40: add(X1,active(X2)) -> add(X1,X2) r41: dbl(mark(X)) -> dbl(X) r42: dbl(active(X)) -> dbl(X) r43: first(mark(X1),X2) -> first(X1,X2) r44: first(X1,mark(X2)) -> first(X1,X2) r45: first(active(X1),X2) -> first(X1,X2) r46: first(X1,active(X2)) -> first(X1,X2) r47: half(mark(X)) -> half(X) r48: half(active(X)) -> half(X) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic path order with precedence: precedence: add# > active > mark argument filter: pi(add#) = 1 pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: dbl#(mark(X)) -> dbl#(X) p2: dbl#(active(X)) -> dbl#(X) and R consists of: r1: active(terms(N)) -> mark(cons(recip(sqr(N)),terms(s(N)))) r2: active(sqr(|0|())) -> mark(|0|()) r3: active(sqr(s(X))) -> mark(s(add(sqr(X),dbl(X)))) r4: active(dbl(|0|())) -> mark(|0|()) r5: active(dbl(s(X))) -> mark(s(s(dbl(X)))) r6: active(add(|0|(),X)) -> mark(X) r7: active(add(s(X),Y)) -> mark(s(add(X,Y))) r8: active(first(|0|(),X)) -> mark(nil()) r9: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r10: active(half(|0|())) -> mark(|0|()) r11: active(half(s(|0|()))) -> mark(|0|()) r12: active(half(s(s(X)))) -> mark(s(half(X))) r13: active(half(dbl(X))) -> mark(X) r14: mark(terms(X)) -> active(terms(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r16: mark(recip(X)) -> active(recip(mark(X))) r17: mark(sqr(X)) -> active(sqr(mark(X))) r18: mark(s(X)) -> active(s(mark(X))) r19: mark(|0|()) -> active(|0|()) r20: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r21: mark(dbl(X)) -> active(dbl(mark(X))) r22: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r23: mark(nil()) -> active(nil()) r24: mark(half(X)) -> active(half(mark(X))) r25: terms(mark(X)) -> terms(X) r26: terms(active(X)) -> terms(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: recip(mark(X)) -> recip(X) r32: recip(active(X)) -> recip(X) r33: sqr(mark(X)) -> sqr(X) r34: sqr(active(X)) -> sqr(X) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: add(mark(X1),X2) -> add(X1,X2) r38: add(X1,mark(X2)) -> add(X1,X2) r39: add(active(X1),X2) -> add(X1,X2) r40: add(X1,active(X2)) -> add(X1,X2) r41: dbl(mark(X)) -> dbl(X) r42: dbl(active(X)) -> dbl(X) r43: first(mark(X1),X2) -> first(X1,X2) r44: first(X1,mark(X2)) -> first(X1,X2) r45: first(active(X1),X2) -> first(X1,X2) r46: first(X1,active(X2)) -> first(X1,X2) r47: half(mark(X)) -> half(X) r48: half(active(X)) -> half(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic path order with precedence: precedence: dbl# > active > mark argument filter: pi(dbl#) = 1 pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: first#(mark(X1),X2) -> first#(X1,X2) p2: first#(X1,active(X2)) -> first#(X1,X2) p3: first#(active(X1),X2) -> first#(X1,X2) p4: first#(X1,mark(X2)) -> first#(X1,X2) and R consists of: r1: active(terms(N)) -> mark(cons(recip(sqr(N)),terms(s(N)))) r2: active(sqr(|0|())) -> mark(|0|()) r3: active(sqr(s(X))) -> mark(s(add(sqr(X),dbl(X)))) r4: active(dbl(|0|())) -> mark(|0|()) r5: active(dbl(s(X))) -> mark(s(s(dbl(X)))) r6: active(add(|0|(),X)) -> mark(X) r7: active(add(s(X),Y)) -> mark(s(add(X,Y))) r8: active(first(|0|(),X)) -> mark(nil()) r9: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r10: active(half(|0|())) -> mark(|0|()) r11: active(half(s(|0|()))) -> mark(|0|()) r12: active(half(s(s(X)))) -> mark(s(half(X))) r13: active(half(dbl(X))) -> mark(X) r14: mark(terms(X)) -> active(terms(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r16: mark(recip(X)) -> active(recip(mark(X))) r17: mark(sqr(X)) -> active(sqr(mark(X))) r18: mark(s(X)) -> active(s(mark(X))) r19: mark(|0|()) -> active(|0|()) r20: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r21: mark(dbl(X)) -> active(dbl(mark(X))) r22: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r23: mark(nil()) -> active(nil()) r24: mark(half(X)) -> active(half(mark(X))) r25: terms(mark(X)) -> terms(X) r26: terms(active(X)) -> terms(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: recip(mark(X)) -> recip(X) r32: recip(active(X)) -> recip(X) r33: sqr(mark(X)) -> sqr(X) r34: sqr(active(X)) -> sqr(X) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: add(mark(X1),X2) -> add(X1,X2) r38: add(X1,mark(X2)) -> add(X1,X2) r39: add(active(X1),X2) -> add(X1,X2) r40: add(X1,active(X2)) -> add(X1,X2) r41: dbl(mark(X)) -> dbl(X) r42: dbl(active(X)) -> dbl(X) r43: first(mark(X1),X2) -> first(X1,X2) r44: first(X1,mark(X2)) -> first(X1,X2) r45: first(active(X1),X2) -> first(X1,X2) r46: first(X1,active(X2)) -> first(X1,X2) r47: half(mark(X)) -> half(X) r48: half(active(X)) -> half(X) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic path order with precedence: precedence: first# > active > mark argument filter: pi(first#) = 2 pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p2, p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: first#(mark(X1),X2) -> first#(X1,X2) p2: first#(active(X1),X2) -> first#(X1,X2) and R consists of: r1: active(terms(N)) -> mark(cons(recip(sqr(N)),terms(s(N)))) r2: active(sqr(|0|())) -> mark(|0|()) r3: active(sqr(s(X))) -> mark(s(add(sqr(X),dbl(X)))) r4: active(dbl(|0|())) -> mark(|0|()) r5: active(dbl(s(X))) -> mark(s(s(dbl(X)))) r6: active(add(|0|(),X)) -> mark(X) r7: active(add(s(X),Y)) -> mark(s(add(X,Y))) r8: active(first(|0|(),X)) -> mark(nil()) r9: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r10: active(half(|0|())) -> mark(|0|()) r11: active(half(s(|0|()))) -> mark(|0|()) r12: active(half(s(s(X)))) -> mark(s(half(X))) r13: active(half(dbl(X))) -> mark(X) r14: mark(terms(X)) -> active(terms(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r16: mark(recip(X)) -> active(recip(mark(X))) r17: mark(sqr(X)) -> active(sqr(mark(X))) r18: mark(s(X)) -> active(s(mark(X))) r19: mark(|0|()) -> active(|0|()) r20: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r21: mark(dbl(X)) -> active(dbl(mark(X))) r22: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r23: mark(nil()) -> active(nil()) r24: mark(half(X)) -> active(half(mark(X))) r25: terms(mark(X)) -> terms(X) r26: terms(active(X)) -> terms(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: recip(mark(X)) -> recip(X) r32: recip(active(X)) -> recip(X) r33: sqr(mark(X)) -> sqr(X) r34: sqr(active(X)) -> sqr(X) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: add(mark(X1),X2) -> add(X1,X2) r38: add(X1,mark(X2)) -> add(X1,X2) r39: add(active(X1),X2) -> add(X1,X2) r40: add(X1,active(X2)) -> add(X1,X2) r41: dbl(mark(X)) -> dbl(X) r42: dbl(active(X)) -> dbl(X) r43: first(mark(X1),X2) -> first(X1,X2) r44: first(X1,mark(X2)) -> first(X1,X2) r45: first(active(X1),X2) -> first(X1,X2) r46: first(X1,active(X2)) -> first(X1,X2) r47: half(mark(X)) -> half(X) r48: half(active(X)) -> half(X) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: first#(mark(X1),X2) -> first#(X1,X2) p2: first#(active(X1),X2) -> first#(X1,X2) and R consists of: r1: active(terms(N)) -> mark(cons(recip(sqr(N)),terms(s(N)))) r2: active(sqr(|0|())) -> mark(|0|()) r3: active(sqr(s(X))) -> mark(s(add(sqr(X),dbl(X)))) r4: active(dbl(|0|())) -> mark(|0|()) r5: active(dbl(s(X))) -> mark(s(s(dbl(X)))) r6: active(add(|0|(),X)) -> mark(X) r7: active(add(s(X),Y)) -> mark(s(add(X,Y))) r8: active(first(|0|(),X)) -> mark(nil()) r9: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r10: active(half(|0|())) -> mark(|0|()) r11: active(half(s(|0|()))) -> mark(|0|()) r12: active(half(s(s(X)))) -> mark(s(half(X))) r13: active(half(dbl(X))) -> mark(X) r14: mark(terms(X)) -> active(terms(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r16: mark(recip(X)) -> active(recip(mark(X))) r17: mark(sqr(X)) -> active(sqr(mark(X))) r18: mark(s(X)) -> active(s(mark(X))) r19: mark(|0|()) -> active(|0|()) r20: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r21: mark(dbl(X)) -> active(dbl(mark(X))) r22: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r23: mark(nil()) -> active(nil()) r24: mark(half(X)) -> active(half(mark(X))) r25: terms(mark(X)) -> terms(X) r26: terms(active(X)) -> terms(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: recip(mark(X)) -> recip(X) r32: recip(active(X)) -> recip(X) r33: sqr(mark(X)) -> sqr(X) r34: sqr(active(X)) -> sqr(X) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: add(mark(X1),X2) -> add(X1,X2) r38: add(X1,mark(X2)) -> add(X1,X2) r39: add(active(X1),X2) -> add(X1,X2) r40: add(X1,active(X2)) -> add(X1,X2) r41: dbl(mark(X)) -> dbl(X) r42: dbl(active(X)) -> dbl(X) r43: first(mark(X1),X2) -> first(X1,X2) r44: first(X1,mark(X2)) -> first(X1,X2) r45: first(active(X1),X2) -> first(X1,X2) r46: first(X1,active(X2)) -> first(X1,X2) r47: half(mark(X)) -> half(X) r48: half(active(X)) -> half(X) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic path order with precedence: precedence: first# > active > mark argument filter: pi(first#) = 1 pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: half#(mark(X)) -> half#(X) p2: half#(active(X)) -> half#(X) and R consists of: r1: active(terms(N)) -> mark(cons(recip(sqr(N)),terms(s(N)))) r2: active(sqr(|0|())) -> mark(|0|()) r3: active(sqr(s(X))) -> mark(s(add(sqr(X),dbl(X)))) r4: active(dbl(|0|())) -> mark(|0|()) r5: active(dbl(s(X))) -> mark(s(s(dbl(X)))) r6: active(add(|0|(),X)) -> mark(X) r7: active(add(s(X),Y)) -> mark(s(add(X,Y))) r8: active(first(|0|(),X)) -> mark(nil()) r9: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r10: active(half(|0|())) -> mark(|0|()) r11: active(half(s(|0|()))) -> mark(|0|()) r12: active(half(s(s(X)))) -> mark(s(half(X))) r13: active(half(dbl(X))) -> mark(X) r14: mark(terms(X)) -> active(terms(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r16: mark(recip(X)) -> active(recip(mark(X))) r17: mark(sqr(X)) -> active(sqr(mark(X))) r18: mark(s(X)) -> active(s(mark(X))) r19: mark(|0|()) -> active(|0|()) r20: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r21: mark(dbl(X)) -> active(dbl(mark(X))) r22: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r23: mark(nil()) -> active(nil()) r24: mark(half(X)) -> active(half(mark(X))) r25: terms(mark(X)) -> terms(X) r26: terms(active(X)) -> terms(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: recip(mark(X)) -> recip(X) r32: recip(active(X)) -> recip(X) r33: sqr(mark(X)) -> sqr(X) r34: sqr(active(X)) -> sqr(X) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: add(mark(X1),X2) -> add(X1,X2) r38: add(X1,mark(X2)) -> add(X1,X2) r39: add(active(X1),X2) -> add(X1,X2) r40: add(X1,active(X2)) -> add(X1,X2) r41: dbl(mark(X)) -> dbl(X) r42: dbl(active(X)) -> dbl(X) r43: first(mark(X1),X2) -> first(X1,X2) r44: first(X1,mark(X2)) -> first(X1,X2) r45: first(active(X1),X2) -> first(X1,X2) r46: first(X1,active(X2)) -> first(X1,X2) r47: half(mark(X)) -> half(X) r48: half(active(X)) -> half(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic path order with precedence: precedence: half# > active > mark argument filter: pi(half#) = 1 pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48 We remove them from the problem. Then no dependency pair remains.