YES We show the termination of the TRS R: from(X) -> cons(X,n__from(n__s(X))) sel(|0|(),cons(X,Y)) -> X sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) from(X) -> n__from(X) s(X) -> n__s(X) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: sel#(s(X),cons(Y,Z)) -> sel#(X,activate(Z)) p2: sel#(s(X),cons(Y,Z)) -> activate#(Z) p3: activate#(n__from(X)) -> from#(activate(X)) p4: activate#(n__from(X)) -> activate#(X) p5: activate#(n__s(X)) -> s#(activate(X)) p6: activate#(n__s(X)) -> activate#(X) and R consists of: r1: from(X) -> cons(X,n__from(n__s(X))) r2: sel(|0|(),cons(X,Y)) -> X r3: sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) r4: from(X) -> n__from(X) r5: s(X) -> n__s(X) r6: activate(n__from(X)) -> from(activate(X)) r7: activate(n__s(X)) -> s(activate(X)) r8: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1} {p4, p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: sel#(s(X),cons(Y,Z)) -> sel#(X,activate(Z)) and R consists of: r1: from(X) -> cons(X,n__from(n__s(X))) r2: sel(|0|(),cons(X,Y)) -> X r3: sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) r4: from(X) -> n__from(X) r5: s(X) -> n__s(X) r6: activate(n__from(X)) -> from(activate(X)) r7: activate(n__s(X)) -> s(activate(X)) r8: activate(X) -> X The set of usable rules consists of r1, r4, r5, r6, r7, r8 Take the reduction pair: lexicographic path order with precedence: precedence: activate > cons > s > n__s > from > n__from > sel# argument filter: pi(sel#) = 1 pi(s) = [1] pi(cons) = 1 pi(activate) = [1] pi(from) = [1] pi(n__from) = [1] pi(n__s) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__s(X)) -> activate#(X) p2: activate#(n__from(X)) -> activate#(X) and R consists of: r1: from(X) -> cons(X,n__from(n__s(X))) r2: sel(|0|(),cons(X,Y)) -> X r3: sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) r4: from(X) -> n__from(X) r5: s(X) -> n__s(X) r6: activate(n__from(X)) -> from(activate(X)) r7: activate(n__s(X)) -> s(activate(X)) r8: activate(X) -> X The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic path order with precedence: precedence: activate# > n__from > n__s argument filter: pi(activate#) = 1 pi(n__s) = [1] pi(n__from) = [1] The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8 We remove them from the problem. Then no dependency pair remains.