YES We show the termination of the TRS R: f(f(X)) -> c(n__f(g(n__f(X)))) c(X) -> d(activate(X)) h(X) -> c(n__d(X)) f(X) -> n__f(X) d(X) -> n__d(X) activate(n__f(X)) -> f(X) activate(n__d(X)) -> d(X) activate(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(f(X)) -> c#(n__f(g(n__f(X)))) p2: c#(X) -> d#(activate(X)) p3: c#(X) -> activate#(X) p4: h#(X) -> c#(n__d(X)) p5: activate#(n__f(X)) -> f#(X) p6: activate#(n__d(X)) -> d#(X) and R consists of: r1: f(f(X)) -> c(n__f(g(n__f(X)))) r2: c(X) -> d(activate(X)) r3: h(X) -> c(n__d(X)) r4: f(X) -> n__f(X) r5: d(X) -> n__d(X) r6: activate(n__f(X)) -> f(X) r7: activate(n__d(X)) -> d(X) r8: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p3, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(f(X)) -> c#(n__f(g(n__f(X)))) p2: c#(X) -> activate#(X) p3: activate#(n__f(X)) -> f#(X) and R consists of: r1: f(f(X)) -> c(n__f(g(n__f(X)))) r2: c(X) -> d(activate(X)) r3: h(X) -> c(n__d(X)) r4: f(X) -> n__f(X) r5: d(X) -> n__d(X) r6: activate(n__f(X)) -> f(X) r7: activate(n__d(X)) -> d(X) r8: activate(X) -> X The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic path order with precedence: precedence: f# > activate# > c# > g > n__f > f argument filter: pi(f#) = 1 pi(f) = [1] pi(c#) = 1 pi(n__f) = 1 pi(g) = 1 pi(activate#) = 1 The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: c#(X) -> activate#(X) p2: activate#(n__f(X)) -> f#(X) and R consists of: (no rules) The estimated dependency graph contains the following SCCs: (no SCCs)