YES We show the termination of the TRS R: from(X) -> cons(X,n__from(s(X))) first(|0|(),Z) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) sel(|0|(),cons(X,Z)) -> X sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) from(X) -> n__from(X) first(X1,X2) -> n__first(X1,X2) activate(n__from(X)) -> from(X) activate(n__first(X1,X2)) -> first(X1,X2) activate(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: first#(s(X),cons(Y,Z)) -> activate#(Z) p2: sel#(s(X),cons(Y,Z)) -> sel#(X,activate(Z)) p3: sel#(s(X),cons(Y,Z)) -> activate#(Z) p4: activate#(n__from(X)) -> from#(X) p5: activate#(n__first(X1,X2)) -> first#(X1,X2) and R consists of: r1: from(X) -> cons(X,n__from(s(X))) r2: first(|0|(),Z) -> nil() r3: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r4: sel(|0|(),cons(X,Z)) -> X r5: sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) r6: from(X) -> n__from(X) r7: first(X1,X2) -> n__first(X1,X2) r8: activate(n__from(X)) -> from(X) r9: activate(n__first(X1,X2)) -> first(X1,X2) r10: activate(X) -> X The estimated dependency graph contains the following SCCs: {p2} {p1, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: sel#(s(X),cons(Y,Z)) -> sel#(X,activate(Z)) and R consists of: r1: from(X) -> cons(X,n__from(s(X))) r2: first(|0|(),Z) -> nil() r3: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r4: sel(|0|(),cons(X,Z)) -> X r5: sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) r6: from(X) -> n__from(X) r7: first(X1,X2) -> n__first(X1,X2) r8: activate(n__from(X)) -> from(X) r9: activate(n__first(X1,X2)) -> first(X1,X2) r10: activate(X) -> X The set of usable rules consists of r1, r2, r3, r6, r7, r8, r9, r10 Take the reduction pair: lexicographic path order with precedence: precedence: n__first > |0| > nil > n__from > s > activate > from > cons > first > sel# argument filter: pi(sel#) = 1 pi(s) = [1] pi(cons) = [] pi(activate) = [1] pi(from) = [1] pi(n__from) = 1 pi(first) = 1 pi(|0|) = [] pi(nil) = [] pi(n__first) = 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: first#(s(X),cons(Y,Z)) -> activate#(Z) p2: activate#(n__first(X1,X2)) -> first#(X1,X2) and R consists of: r1: from(X) -> cons(X,n__from(s(X))) r2: first(|0|(),Z) -> nil() r3: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r4: sel(|0|(),cons(X,Z)) -> X r5: sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) r6: from(X) -> n__from(X) r7: first(X1,X2) -> n__first(X1,X2) r8: activate(n__from(X)) -> from(X) r9: activate(n__first(X1,X2)) -> first(X1,X2) r10: activate(X) -> X The set of usable rules consists of (no rules) Take the reduction pair: lexicographic path order with precedence: precedence: first# > n__first > activate# > cons > s argument filter: pi(first#) = 2 pi(s) = [] pi(cons) = [1, 2] pi(activate#) = 1 pi(n__first) = [1, 2] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains.