YES We show the termination of the TRS R: a(h(),h(),h(),x) -> s(x) a(l,x,s(y),h()) -> a(l,x,y,s(h())) a(l,x,s(y),s(z)) -> a(l,x,y,a(l,x,s(y),z)) a(l,s(x),h(),z) -> a(l,x,z,z) a(s(l),h(),h(),z) -> a(l,z,h(),z) +(x,h()) -> x +(h(),x) -> x +(s(x),s(y)) -> s(s(+(x,y))) +(+(x,y),z) -> +(x,+(y,z)) s(h()) -> |1|() *(h(),x) -> h() *(x,h()) -> h() *(s(x),s(y)) -> s(+(+(*(x,y),x),y)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a#(h(),h(),h(),x) -> s#(x) p2: a#(l,x,s(y),h()) -> a#(l,x,y,s(h())) p3: a#(l,x,s(y),h()) -> s#(h()) p4: a#(l,x,s(y),s(z)) -> a#(l,x,y,a(l,x,s(y),z)) p5: a#(l,x,s(y),s(z)) -> a#(l,x,s(y),z) p6: a#(l,s(x),h(),z) -> a#(l,x,z,z) p7: a#(s(l),h(),h(),z) -> a#(l,z,h(),z) p8: +#(s(x),s(y)) -> s#(s(+(x,y))) p9: +#(s(x),s(y)) -> s#(+(x,y)) p10: +#(s(x),s(y)) -> +#(x,y) p11: +#(+(x,y),z) -> +#(x,+(y,z)) p12: +#(+(x,y),z) -> +#(y,z) p13: *#(s(x),s(y)) -> s#(+(+(*(x,y),x),y)) p14: *#(s(x),s(y)) -> +#(+(*(x,y),x),y) p15: *#(s(x),s(y)) -> +#(*(x,y),x) p16: *#(s(x),s(y)) -> *#(x,y) and R consists of: r1: a(h(),h(),h(),x) -> s(x) r2: a(l,x,s(y),h()) -> a(l,x,y,s(h())) r3: a(l,x,s(y),s(z)) -> a(l,x,y,a(l,x,s(y),z)) r4: a(l,s(x),h(),z) -> a(l,x,z,z) r5: a(s(l),h(),h(),z) -> a(l,z,h(),z) r6: +(x,h()) -> x r7: +(h(),x) -> x r8: +(s(x),s(y)) -> s(s(+(x,y))) r9: +(+(x,y),z) -> +(x,+(y,z)) r10: s(h()) -> |1|() r11: *(h(),x) -> h() r12: *(x,h()) -> h() r13: *(s(x),s(y)) -> s(+(+(*(x,y),x),y)) The estimated dependency graph contains the following SCCs: {p2, p4, p5, p6, p7} {p16} {p10, p11, p12} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a#(l,x,s(y),h()) -> a#(l,x,y,s(h())) p2: a#(s(l),h(),h(),z) -> a#(l,z,h(),z) p3: a#(l,s(x),h(),z) -> a#(l,x,z,z) p4: a#(l,x,s(y),s(z)) -> a#(l,x,s(y),z) p5: a#(l,x,s(y),s(z)) -> a#(l,x,y,a(l,x,s(y),z)) and R consists of: r1: a(h(),h(),h(),x) -> s(x) r2: a(l,x,s(y),h()) -> a(l,x,y,s(h())) r3: a(l,x,s(y),s(z)) -> a(l,x,y,a(l,x,s(y),z)) r4: a(l,s(x),h(),z) -> a(l,x,z,z) r5: a(s(l),h(),h(),z) -> a(l,z,h(),z) r6: +(x,h()) -> x r7: +(h(),x) -> x r8: +(s(x),s(y)) -> s(s(+(x,y))) r9: +(+(x,y),z) -> +(x,+(y,z)) r10: s(h()) -> |1|() r11: *(h(),x) -> h() r12: *(x,h()) -> h() r13: *(s(x),s(y)) -> s(+(+(*(x,y),x),y)) The set of usable rules consists of r1, r2, r3, r4, r5, r10 Take the reduction pair: lexicographic path order with precedence: precedence: a > s > h > |1| > a# argument filter: pi(a#) = 1 pi(s) = [1] pi(h) = [] pi(a) = [1, 2, 3, 4] pi(|1|) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a#(l,x,s(y),h()) -> a#(l,x,y,s(h())) p2: a#(l,s(x),h(),z) -> a#(l,x,z,z) p3: a#(l,x,s(y),s(z)) -> a#(l,x,s(y),z) p4: a#(l,x,s(y),s(z)) -> a#(l,x,y,a(l,x,s(y),z)) and R consists of: r1: a(h(),h(),h(),x) -> s(x) r2: a(l,x,s(y),h()) -> a(l,x,y,s(h())) r3: a(l,x,s(y),s(z)) -> a(l,x,y,a(l,x,s(y),z)) r4: a(l,s(x),h(),z) -> a(l,x,z,z) r5: a(s(l),h(),h(),z) -> a(l,z,h(),z) r6: +(x,h()) -> x r7: +(h(),x) -> x r8: +(s(x),s(y)) -> s(s(+(x,y))) r9: +(+(x,y),z) -> +(x,+(y,z)) r10: s(h()) -> |1|() r11: *(h(),x) -> h() r12: *(x,h()) -> h() r13: *(s(x),s(y)) -> s(+(+(*(x,y),x),y)) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a#(l,x,s(y),h()) -> a#(l,x,y,s(h())) p2: a#(l,x,s(y),s(z)) -> a#(l,x,y,a(l,x,s(y),z)) p3: a#(l,x,s(y),s(z)) -> a#(l,x,s(y),z) p4: a#(l,s(x),h(),z) -> a#(l,x,z,z) and R consists of: r1: a(h(),h(),h(),x) -> s(x) r2: a(l,x,s(y),h()) -> a(l,x,y,s(h())) r3: a(l,x,s(y),s(z)) -> a(l,x,y,a(l,x,s(y),z)) r4: a(l,s(x),h(),z) -> a(l,x,z,z) r5: a(s(l),h(),h(),z) -> a(l,z,h(),z) r6: +(x,h()) -> x r7: +(h(),x) -> x r8: +(s(x),s(y)) -> s(s(+(x,y))) r9: +(+(x,y),z) -> +(x,+(y,z)) r10: s(h()) -> |1|() r11: *(h(),x) -> h() r12: *(x,h()) -> h() r13: *(s(x),s(y)) -> s(+(+(*(x,y),x),y)) The set of usable rules consists of r1, r2, r3, r4, r5, r10 Take the reduction pair: lexicographic path order with precedence: precedence: a > h > s > |1| > a# argument filter: pi(a#) = 2 pi(s) = [1] pi(h) = [] pi(a) = [1, 2, 3, 4] pi(|1|) = [] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a#(l,x,s(y),h()) -> a#(l,x,y,s(h())) p2: a#(l,x,s(y),s(z)) -> a#(l,x,y,a(l,x,s(y),z)) p3: a#(l,x,s(y),s(z)) -> a#(l,x,s(y),z) and R consists of: r1: a(h(),h(),h(),x) -> s(x) r2: a(l,x,s(y),h()) -> a(l,x,y,s(h())) r3: a(l,x,s(y),s(z)) -> a(l,x,y,a(l,x,s(y),z)) r4: a(l,s(x),h(),z) -> a(l,x,z,z) r5: a(s(l),h(),h(),z) -> a(l,z,h(),z) r6: +(x,h()) -> x r7: +(h(),x) -> x r8: +(s(x),s(y)) -> s(s(+(x,y))) r9: +(+(x,y),z) -> +(x,+(y,z)) r10: s(h()) -> |1|() r11: *(h(),x) -> h() r12: *(x,h()) -> h() r13: *(s(x),s(y)) -> s(+(+(*(x,y),x),y)) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a#(l,x,s(y),h()) -> a#(l,x,y,s(h())) p2: a#(l,x,s(y),s(z)) -> a#(l,x,s(y),z) p3: a#(l,x,s(y),s(z)) -> a#(l,x,y,a(l,x,s(y),z)) and R consists of: r1: a(h(),h(),h(),x) -> s(x) r2: a(l,x,s(y),h()) -> a(l,x,y,s(h())) r3: a(l,x,s(y),s(z)) -> a(l,x,y,a(l,x,s(y),z)) r4: a(l,s(x),h(),z) -> a(l,x,z,z) r5: a(s(l),h(),h(),z) -> a(l,z,h(),z) r6: +(x,h()) -> x r7: +(h(),x) -> x r8: +(s(x),s(y)) -> s(s(+(x,y))) r9: +(+(x,y),z) -> +(x,+(y,z)) r10: s(h()) -> |1|() r11: *(h(),x) -> h() r12: *(x,h()) -> h() r13: *(s(x),s(y)) -> s(+(+(*(x,y),x),y)) The set of usable rules consists of r1, r2, r3, r4, r5, r10 Take the reduction pair: lexicographic path order with precedence: precedence: h > |1| > a > s > a# argument filter: pi(a#) = 3 pi(s) = [1] pi(h) = [] pi(a) = [1, 2, 3, 4] pi(|1|) = [] The next rules are strictly ordered: p1, p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a#(l,x,s(y),s(z)) -> a#(l,x,s(y),z) and R consists of: r1: a(h(),h(),h(),x) -> s(x) r2: a(l,x,s(y),h()) -> a(l,x,y,s(h())) r3: a(l,x,s(y),s(z)) -> a(l,x,y,a(l,x,s(y),z)) r4: a(l,s(x),h(),z) -> a(l,x,z,z) r5: a(s(l),h(),h(),z) -> a(l,z,h(),z) r6: +(x,h()) -> x r7: +(h(),x) -> x r8: +(s(x),s(y)) -> s(s(+(x,y))) r9: +(+(x,y),z) -> +(x,+(y,z)) r10: s(h()) -> |1|() r11: *(h(),x) -> h() r12: *(x,h()) -> h() r13: *(s(x),s(y)) -> s(+(+(*(x,y),x),y)) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a#(l,x,s(y),s(z)) -> a#(l,x,s(y),z) and R consists of: r1: a(h(),h(),h(),x) -> s(x) r2: a(l,x,s(y),h()) -> a(l,x,y,s(h())) r3: a(l,x,s(y),s(z)) -> a(l,x,y,a(l,x,s(y),z)) r4: a(l,s(x),h(),z) -> a(l,x,z,z) r5: a(s(l),h(),h(),z) -> a(l,z,h(),z) r6: +(x,h()) -> x r7: +(h(),x) -> x r8: +(s(x),s(y)) -> s(s(+(x,y))) r9: +(+(x,y),z) -> +(x,+(y,z)) r10: s(h()) -> |1|() r11: *(h(),x) -> h() r12: *(x,h()) -> h() r13: *(s(x),s(y)) -> s(+(+(*(x,y),x),y)) The set of usable rules consists of r10 Take the reduction pair: lexicographic path order with precedence: precedence: h > s > |1| > a# argument filter: pi(a#) = [3, 4] pi(s) = [1] pi(h) = [] pi(|1|) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: *#(s(x),s(y)) -> *#(x,y) and R consists of: r1: a(h(),h(),h(),x) -> s(x) r2: a(l,x,s(y),h()) -> a(l,x,y,s(h())) r3: a(l,x,s(y),s(z)) -> a(l,x,y,a(l,x,s(y),z)) r4: a(l,s(x),h(),z) -> a(l,x,z,z) r5: a(s(l),h(),h(),z) -> a(l,z,h(),z) r6: +(x,h()) -> x r7: +(h(),x) -> x r8: +(s(x),s(y)) -> s(s(+(x,y))) r9: +(+(x,y),z) -> +(x,+(y,z)) r10: s(h()) -> |1|() r11: *(h(),x) -> h() r12: *(x,h()) -> h() r13: *(s(x),s(y)) -> s(+(+(*(x,y),x),y)) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic path order with precedence: precedence: s > *# argument filter: pi(*#) = [1, 2] pi(s) = [1] The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: +#(s(x),s(y)) -> +#(x,y) p2: +#(+(x,y),z) -> +#(y,z) p3: +#(+(x,y),z) -> +#(x,+(y,z)) and R consists of: r1: a(h(),h(),h(),x) -> s(x) r2: a(l,x,s(y),h()) -> a(l,x,y,s(h())) r3: a(l,x,s(y),s(z)) -> a(l,x,y,a(l,x,s(y),z)) r4: a(l,s(x),h(),z) -> a(l,x,z,z) r5: a(s(l),h(),h(),z) -> a(l,z,h(),z) r6: +(x,h()) -> x r7: +(h(),x) -> x r8: +(s(x),s(y)) -> s(s(+(x,y))) r9: +(+(x,y),z) -> +(x,+(y,z)) r10: s(h()) -> |1|() r11: *(h(),x) -> h() r12: *(x,h()) -> h() r13: *(s(x),s(y)) -> s(+(+(*(x,y),x),y)) The set of usable rules consists of r6, r7, r8, r9, r10 Take the reduction pair: lexicographic path order with precedence: precedence: s > h > |1| > +# > + argument filter: pi(+#) = 1 pi(s) = 1 pi(+) = [1, 2] pi(h) = [] pi(|1|) = [] The next rules are strictly ordered: p2, p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: +#(s(x),s(y)) -> +#(x,y) and R consists of: r1: a(h(),h(),h(),x) -> s(x) r2: a(l,x,s(y),h()) -> a(l,x,y,s(h())) r3: a(l,x,s(y),s(z)) -> a(l,x,y,a(l,x,s(y),z)) r4: a(l,s(x),h(),z) -> a(l,x,z,z) r5: a(s(l),h(),h(),z) -> a(l,z,h(),z) r6: +(x,h()) -> x r7: +(h(),x) -> x r8: +(s(x),s(y)) -> s(s(+(x,y))) r9: +(+(x,y),z) -> +(x,+(y,z)) r10: s(h()) -> |1|() r11: *(h(),x) -> h() r12: *(x,h()) -> h() r13: *(s(x),s(y)) -> s(+(+(*(x,y),x),y)) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: +#(s(x),s(y)) -> +#(x,y) and R consists of: r1: a(h(),h(),h(),x) -> s(x) r2: a(l,x,s(y),h()) -> a(l,x,y,s(h())) r3: a(l,x,s(y),s(z)) -> a(l,x,y,a(l,x,s(y),z)) r4: a(l,s(x),h(),z) -> a(l,x,z,z) r5: a(s(l),h(),h(),z) -> a(l,z,h(),z) r6: +(x,h()) -> x r7: +(h(),x) -> x r8: +(s(x),s(y)) -> s(s(+(x,y))) r9: +(+(x,y),z) -> +(x,+(y,z)) r10: s(h()) -> |1|() r11: *(h(),x) -> h() r12: *(x,h()) -> h() r13: *(s(x),s(y)) -> s(+(+(*(x,y),x),y)) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic path order with precedence: precedence: s > +# argument filter: pi(+#) = [1, 2] pi(s) = [1] The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13 We remove them from the problem. Then no dependency pair remains.