YES We show the termination of the TRS R: p(s(x)) -> x s(p(x)) -> x +(|0|(),y) -> y +(s(x),y) -> s(+(x,y)) +(p(x),y) -> p(+(x,y)) minus(|0|()) -> |0|() minus(s(x)) -> p(minus(x)) minus(p(x)) -> s(minus(x)) *(|0|(),y) -> |0|() *(s(x),y) -> +(*(x,y),y) *(p(x),y) -> +(*(x,y),minus(y)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: +#(s(x),y) -> s#(+(x,y)) p2: +#(s(x),y) -> +#(x,y) p3: +#(p(x),y) -> p#(+(x,y)) p4: +#(p(x),y) -> +#(x,y) p5: minus#(s(x)) -> p#(minus(x)) p6: minus#(s(x)) -> minus#(x) p7: minus#(p(x)) -> s#(minus(x)) p8: minus#(p(x)) -> minus#(x) p9: *#(s(x),y) -> +#(*(x,y),y) p10: *#(s(x),y) -> *#(x,y) p11: *#(p(x),y) -> +#(*(x,y),minus(y)) p12: *#(p(x),y) -> *#(x,y) p13: *#(p(x),y) -> minus#(y) and R consists of: r1: p(s(x)) -> x r2: s(p(x)) -> x r3: +(|0|(),y) -> y r4: +(s(x),y) -> s(+(x,y)) r5: +(p(x),y) -> p(+(x,y)) r6: minus(|0|()) -> |0|() r7: minus(s(x)) -> p(minus(x)) r8: minus(p(x)) -> s(minus(x)) r9: *(|0|(),y) -> |0|() r10: *(s(x),y) -> +(*(x,y),y) r11: *(p(x),y) -> +(*(x,y),minus(y)) The estimated dependency graph contains the following SCCs: {p10, p12} {p2, p4} {p6, p8} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: *#(p(x),y) -> *#(x,y) p2: *#(s(x),y) -> *#(x,y) and R consists of: r1: p(s(x)) -> x r2: s(p(x)) -> x r3: +(|0|(),y) -> y r4: +(s(x),y) -> s(+(x,y)) r5: +(p(x),y) -> p(+(x,y)) r6: minus(|0|()) -> |0|() r7: minus(s(x)) -> p(minus(x)) r8: minus(p(x)) -> s(minus(x)) r9: *(|0|(),y) -> |0|() r10: *(s(x),y) -> +(*(x,y),y) r11: *(p(x),y) -> +(*(x,y),minus(y)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic path order with precedence: precedence: *# > s > p argument filter: pi(*#) = 1 pi(p) = [1] pi(s) = [1] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: +#(s(x),y) -> +#(x,y) p2: +#(p(x),y) -> +#(x,y) and R consists of: r1: p(s(x)) -> x r2: s(p(x)) -> x r3: +(|0|(),y) -> y r4: +(s(x),y) -> s(+(x,y)) r5: +(p(x),y) -> p(+(x,y)) r6: minus(|0|()) -> |0|() r7: minus(s(x)) -> p(minus(x)) r8: minus(p(x)) -> s(minus(x)) r9: *(|0|(),y) -> |0|() r10: *(s(x),y) -> +(*(x,y),y) r11: *(p(x),y) -> +(*(x,y),minus(y)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic path order with precedence: precedence: +# > p > s argument filter: pi(+#) = 1 pi(s) = [1] pi(p) = [1] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: minus#(s(x)) -> minus#(x) p2: minus#(p(x)) -> minus#(x) and R consists of: r1: p(s(x)) -> x r2: s(p(x)) -> x r3: +(|0|(),y) -> y r4: +(s(x),y) -> s(+(x,y)) r5: +(p(x),y) -> p(+(x,y)) r6: minus(|0|()) -> |0|() r7: minus(s(x)) -> p(minus(x)) r8: minus(p(x)) -> s(minus(x)) r9: *(|0|(),y) -> |0|() r10: *(s(x),y) -> +(*(x,y),y) r11: *(p(x),y) -> +(*(x,y),minus(y)) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic path order with precedence: precedence: minus# > p > s argument filter: pi(minus#) = 1 pi(s) = [1] pi(p) = [1] The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11 We remove them from the problem. Then no dependency pair remains.