YES We show the termination of the TRS R: f(j(x,y),y) -> g(f(x,k(y))) f(x,h1(y,z)) -> h2(|0|(),x,h1(y,z)) g(h2(x,y,h1(z,u))) -> h2(s(x),y,h1(z,u)) h2(x,j(y,h1(z,u)),h1(z,u)) -> h2(s(x),y,h1(s(z),u)) i(f(x,h(y))) -> y i(h2(s(x),y,h1(x,z))) -> z k(h(x)) -> h1(|0|(),x) k(h1(x,y)) -> h1(s(x),y) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(j(x,y),y) -> g#(f(x,k(y))) p2: f#(j(x,y),y) -> f#(x,k(y)) p3: f#(j(x,y),y) -> k#(y) p4: f#(x,h1(y,z)) -> h2#(|0|(),x,h1(y,z)) p5: g#(h2(x,y,h1(z,u))) -> h2#(s(x),y,h1(z,u)) p6: h2#(x,j(y,h1(z,u)),h1(z,u)) -> h2#(s(x),y,h1(s(z),u)) and R consists of: r1: f(j(x,y),y) -> g(f(x,k(y))) r2: f(x,h1(y,z)) -> h2(|0|(),x,h1(y,z)) r3: g(h2(x,y,h1(z,u))) -> h2(s(x),y,h1(z,u)) r4: h2(x,j(y,h1(z,u)),h1(z,u)) -> h2(s(x),y,h1(s(z),u)) r5: i(f(x,h(y))) -> y r6: i(h2(s(x),y,h1(x,z))) -> z r7: k(h(x)) -> h1(|0|(),x) r8: k(h1(x,y)) -> h1(s(x),y) The estimated dependency graph contains the following SCCs: {p2} {p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(j(x,y),y) -> f#(x,k(y)) and R consists of: r1: f(j(x,y),y) -> g(f(x,k(y))) r2: f(x,h1(y,z)) -> h2(|0|(),x,h1(y,z)) r3: g(h2(x,y,h1(z,u))) -> h2(s(x),y,h1(z,u)) r4: h2(x,j(y,h1(z,u)),h1(z,u)) -> h2(s(x),y,h1(s(z),u)) r5: i(f(x,h(y))) -> y r6: i(h2(s(x),y,h1(x,z))) -> z r7: k(h(x)) -> h1(|0|(),x) r8: k(h1(x,y)) -> h1(s(x),y) The set of usable rules consists of r7, r8 Take the reduction pair: lexicographic path order with precedence: precedence: s > |0| > h1 > h > k > j > f# argument filter: pi(f#) = [1, 2] pi(j) = [1, 2] pi(k) = 1 pi(h) = [1] pi(h1) = 2 pi(|0|) = [] pi(s) = 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: h2#(x,j(y,h1(z,u)),h1(z,u)) -> h2#(s(x),y,h1(s(z),u)) and R consists of: r1: f(j(x,y),y) -> g(f(x,k(y))) r2: f(x,h1(y,z)) -> h2(|0|(),x,h1(y,z)) r3: g(h2(x,y,h1(z,u))) -> h2(s(x),y,h1(z,u)) r4: h2(x,j(y,h1(z,u)),h1(z,u)) -> h2(s(x),y,h1(s(z),u)) r5: i(f(x,h(y))) -> y r6: i(h2(s(x),y,h1(x,z))) -> z r7: k(h(x)) -> h1(|0|(),x) r8: k(h1(x,y)) -> h1(s(x),y) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic path order with precedence: precedence: s > h1 > j > h2# argument filter: pi(h2#) = [1, 2, 3] pi(j) = [1, 2] pi(h1) = 1 pi(s) = 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.