YES We show the termination of the TRS R: rev1(|0|(),nil()) -> |0|() rev1(s(X),nil()) -> s(X) rev1(X,cons(Y,L)) -> rev1(Y,L) rev(nil()) -> nil() rev(cons(X,L)) -> cons(rev1(X,L),rev2(X,L)) rev2(X,nil()) -> nil() rev2(X,cons(Y,L)) -> rev(cons(X,rev(rev2(Y,L)))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: rev1#(X,cons(Y,L)) -> rev1#(Y,L) p2: rev#(cons(X,L)) -> rev1#(X,L) p3: rev#(cons(X,L)) -> rev2#(X,L) p4: rev2#(X,cons(Y,L)) -> rev#(cons(X,rev(rev2(Y,L)))) p5: rev2#(X,cons(Y,L)) -> rev#(rev2(Y,L)) p6: rev2#(X,cons(Y,L)) -> rev2#(Y,L) and R consists of: r1: rev1(|0|(),nil()) -> |0|() r2: rev1(s(X),nil()) -> s(X) r3: rev1(X,cons(Y,L)) -> rev1(Y,L) r4: rev(nil()) -> nil() r5: rev(cons(X,L)) -> cons(rev1(X,L),rev2(X,L)) r6: rev2(X,nil()) -> nil() r7: rev2(X,cons(Y,L)) -> rev(cons(X,rev(rev2(Y,L)))) The estimated dependency graph contains the following SCCs: {p3, p4, p5, p6} {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: rev2#(X,cons(Y,L)) -> rev#(rev2(Y,L)) p2: rev#(cons(X,L)) -> rev2#(X,L) p3: rev2#(X,cons(Y,L)) -> rev2#(Y,L) p4: rev2#(X,cons(Y,L)) -> rev#(cons(X,rev(rev2(Y,L)))) and R consists of: r1: rev1(|0|(),nil()) -> |0|() r2: rev1(s(X),nil()) -> s(X) r3: rev1(X,cons(Y,L)) -> rev1(Y,L) r4: rev(nil()) -> nil() r5: rev(cons(X,L)) -> cons(rev1(X,L),rev2(X,L)) r6: rev2(X,nil()) -> nil() r7: rev2(X,cons(Y,L)) -> rev(cons(X,rev(rev2(Y,L)))) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7 Take the reduction pair: lexicographic path order with precedence: precedence: nil > s > |0| > rev1 > rev2 > rev > cons > rev2# > rev# argument filter: pi(rev2#) = [2] pi(cons) = [2] pi(rev#) = [1] pi(rev2) = 2 pi(rev) = 1 pi(rev1) = 2 pi(|0|) = [] pi(nil) = [] pi(s) = [] The next rules are strictly ordered: p1, p2, p3, p4 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: rev1#(X,cons(Y,L)) -> rev1#(Y,L) and R consists of: r1: rev1(|0|(),nil()) -> |0|() r2: rev1(s(X),nil()) -> s(X) r3: rev1(X,cons(Y,L)) -> rev1(Y,L) r4: rev(nil()) -> nil() r5: rev(cons(X,L)) -> cons(rev1(X,L),rev2(X,L)) r6: rev2(X,nil()) -> nil() r7: rev2(X,cons(Y,L)) -> rev(cons(X,rev(rev2(Y,L)))) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic path order with precedence: precedence: cons > rev1# argument filter: pi(rev1#) = [1, 2] pi(cons) = [1, 2] The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7 We remove them from the problem. Then no dependency pair remains.