YES We show the termination of the TRS R: eq(|0|(),|0|()) -> true() eq(|0|(),s(X)) -> false() eq(s(X),|0|()) -> false() eq(s(X),s(Y)) -> eq(X,Y) rm(N,nil()) -> nil() rm(N,add(M,X)) -> ifrm(eq(N,M),N,add(M,X)) ifrm(true(),N,add(M,X)) -> rm(N,X) ifrm(false(),N,add(M,X)) -> add(M,rm(N,X)) purge(nil()) -> nil() purge(add(N,X)) -> add(N,purge(rm(N,X))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: eq#(s(X),s(Y)) -> eq#(X,Y) p2: rm#(N,add(M,X)) -> ifrm#(eq(N,M),N,add(M,X)) p3: rm#(N,add(M,X)) -> eq#(N,M) p4: ifrm#(true(),N,add(M,X)) -> rm#(N,X) p5: ifrm#(false(),N,add(M,X)) -> rm#(N,X) p6: purge#(add(N,X)) -> purge#(rm(N,X)) p7: purge#(add(N,X)) -> rm#(N,X) and R consists of: r1: eq(|0|(),|0|()) -> true() r2: eq(|0|(),s(X)) -> false() r3: eq(s(X),|0|()) -> false() r4: eq(s(X),s(Y)) -> eq(X,Y) r5: rm(N,nil()) -> nil() r6: rm(N,add(M,X)) -> ifrm(eq(N,M),N,add(M,X)) r7: ifrm(true(),N,add(M,X)) -> rm(N,X) r8: ifrm(false(),N,add(M,X)) -> add(M,rm(N,X)) r9: purge(nil()) -> nil() r10: purge(add(N,X)) -> add(N,purge(rm(N,X))) The estimated dependency graph contains the following SCCs: {p6} {p2, p4, p5} {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: purge#(add(N,X)) -> purge#(rm(N,X)) and R consists of: r1: eq(|0|(),|0|()) -> true() r2: eq(|0|(),s(X)) -> false() r3: eq(s(X),|0|()) -> false() r4: eq(s(X),s(Y)) -> eq(X,Y) r5: rm(N,nil()) -> nil() r6: rm(N,add(M,X)) -> ifrm(eq(N,M),N,add(M,X)) r7: ifrm(true(),N,add(M,X)) -> rm(N,X) r8: ifrm(false(),N,add(M,X)) -> add(M,rm(N,X)) r9: purge(nil()) -> nil() r10: purge(add(N,X)) -> add(N,purge(rm(N,X))) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8 Take the reduction pair: lexicographic path order with precedence: precedence: |0| > true > add > purge# > nil > rm > ifrm > false > eq > s argument filter: pi(purge#) = 1 pi(add) = [2] pi(rm) = 2 pi(eq) = [1, 2] pi(|0|) = [] pi(true) = [] pi(s) = 1 pi(false) = [] pi(ifrm) = 3 pi(nil) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: ifrm#(false(),N,add(M,X)) -> rm#(N,X) p2: rm#(N,add(M,X)) -> ifrm#(eq(N,M),N,add(M,X)) p3: ifrm#(true(),N,add(M,X)) -> rm#(N,X) and R consists of: r1: eq(|0|(),|0|()) -> true() r2: eq(|0|(),s(X)) -> false() r3: eq(s(X),|0|()) -> false() r4: eq(s(X),s(Y)) -> eq(X,Y) r5: rm(N,nil()) -> nil() r6: rm(N,add(M,X)) -> ifrm(eq(N,M),N,add(M,X)) r7: ifrm(true(),N,add(M,X)) -> rm(N,X) r8: ifrm(false(),N,add(M,X)) -> add(M,rm(N,X)) r9: purge(nil()) -> nil() r10: purge(add(N,X)) -> add(N,purge(rm(N,X))) The set of usable rules consists of r1, r2, r3, r4 Take the reduction pair: lexicographic path order with precedence: precedence: eq > false > s > true > |0| > add > ifrm# > rm# argument filter: pi(ifrm#) = 3 pi(false) = [] pi(add) = [2] pi(rm#) = 2 pi(eq) = [2] pi(true) = [] pi(|0|) = [] pi(s) = [1] The next rules are strictly ordered: p1, p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: rm#(N,add(M,X)) -> ifrm#(eq(N,M),N,add(M,X)) and R consists of: r1: eq(|0|(),|0|()) -> true() r2: eq(|0|(),s(X)) -> false() r3: eq(s(X),|0|()) -> false() r4: eq(s(X),s(Y)) -> eq(X,Y) r5: rm(N,nil()) -> nil() r6: rm(N,add(M,X)) -> ifrm(eq(N,M),N,add(M,X)) r7: ifrm(true(),N,add(M,X)) -> rm(N,X) r8: ifrm(false(),N,add(M,X)) -> add(M,rm(N,X)) r9: purge(nil()) -> nil() r10: purge(add(N,X)) -> add(N,purge(rm(N,X))) The estimated dependency graph contains the following SCCs: (no SCCs) -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: eq#(s(X),s(Y)) -> eq#(X,Y) and R consists of: r1: eq(|0|(),|0|()) -> true() r2: eq(|0|(),s(X)) -> false() r3: eq(s(X),|0|()) -> false() r4: eq(s(X),s(Y)) -> eq(X,Y) r5: rm(N,nil()) -> nil() r6: rm(N,add(M,X)) -> ifrm(eq(N,M),N,add(M,X)) r7: ifrm(true(),N,add(M,X)) -> rm(N,X) r8: ifrm(false(),N,add(M,X)) -> add(M,rm(N,X)) r9: purge(nil()) -> nil() r10: purge(add(N,X)) -> add(N,purge(rm(N,X))) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic path order with precedence: precedence: s > eq# argument filter: pi(eq#) = [1, 2] pi(s) = [1] The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10 We remove them from the problem. Then no dependency pair remains.