YES We show the termination of the TRS R: -(x,|0|()) -> x -(s(x),s(y)) -> -(x,y) <=(|0|(),y) -> true() <=(s(x),|0|()) -> false() <=(s(x),s(y)) -> <=(x,y) if(true(),x,y) -> x if(false(),x,y) -> y perfectp(|0|()) -> false() perfectp(s(x)) -> f(x,s(|0|()),s(x),s(x)) f(|0|(),y,|0|(),u) -> true() f(|0|(),y,s(z),u) -> false() f(s(x),|0|(),z,u) -> f(x,u,-(z,s(x)),u) f(s(x),s(y),z,u) -> if(<=(x,y),f(s(x),-(y,x),z,u),f(x,u,z,u)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: -#(s(x),s(y)) -> -#(x,y) p2: <=#(s(x),s(y)) -> <=#(x,y) p3: perfectp#(s(x)) -> f#(x,s(|0|()),s(x),s(x)) p4: f#(s(x),|0|(),z,u) -> f#(x,u,-(z,s(x)),u) p5: f#(s(x),|0|(),z,u) -> -#(z,s(x)) p6: f#(s(x),s(y),z,u) -> if#(<=(x,y),f(s(x),-(y,x),z,u),f(x,u,z,u)) p7: f#(s(x),s(y),z,u) -> <=#(x,y) p8: f#(s(x),s(y),z,u) -> f#(s(x),-(y,x),z,u) p9: f#(s(x),s(y),z,u) -> -#(y,x) p10: f#(s(x),s(y),z,u) -> f#(x,u,z,u) and R consists of: r1: -(x,|0|()) -> x r2: -(s(x),s(y)) -> -(x,y) r3: <=(|0|(),y) -> true() r4: <=(s(x),|0|()) -> false() r5: <=(s(x),s(y)) -> <=(x,y) r6: if(true(),x,y) -> x r7: if(false(),x,y) -> y r8: perfectp(|0|()) -> false() r9: perfectp(s(x)) -> f(x,s(|0|()),s(x),s(x)) r10: f(|0|(),y,|0|(),u) -> true() r11: f(|0|(),y,s(z),u) -> false() r12: f(s(x),|0|(),z,u) -> f(x,u,-(z,s(x)),u) r13: f(s(x),s(y),z,u) -> if(<=(x,y),f(s(x),-(y,x),z,u),f(x,u,z,u)) The estimated dependency graph contains the following SCCs: {p4, p8, p10} {p1} {p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(s(x),|0|(),z,u) -> f#(x,u,-(z,s(x)),u) p2: f#(s(x),s(y),z,u) -> f#(x,u,z,u) p3: f#(s(x),s(y),z,u) -> f#(s(x),-(y,x),z,u) and R consists of: r1: -(x,|0|()) -> x r2: -(s(x),s(y)) -> -(x,y) r3: <=(|0|(),y) -> true() r4: <=(s(x),|0|()) -> false() r5: <=(s(x),s(y)) -> <=(x,y) r6: if(true(),x,y) -> x r7: if(false(),x,y) -> y r8: perfectp(|0|()) -> false() r9: perfectp(s(x)) -> f(x,s(|0|()),s(x),s(x)) r10: f(|0|(),y,|0|(),u) -> true() r11: f(|0|(),y,s(z),u) -> false() r12: f(s(x),|0|(),z,u) -> f(x,u,-(z,s(x)),u) r13: f(s(x),s(y),z,u) -> if(<=(x,y),f(s(x),-(y,x),z,u),f(x,u,z,u)) The set of usable rules consists of r1, r2 Take the reduction pair: lexicographic path order with precedence: precedence: - > s > f# > |0| argument filter: pi(f#) = [1] pi(s) = [1] pi(|0|) = [] pi(-) = [1, 2] The next rules are strictly ordered: p1, p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(s(x),s(y),z,u) -> f#(s(x),-(y,x),z,u) and R consists of: r1: -(x,|0|()) -> x r2: -(s(x),s(y)) -> -(x,y) r3: <=(|0|(),y) -> true() r4: <=(s(x),|0|()) -> false() r5: <=(s(x),s(y)) -> <=(x,y) r6: if(true(),x,y) -> x r7: if(false(),x,y) -> y r8: perfectp(|0|()) -> false() r9: perfectp(s(x)) -> f(x,s(|0|()),s(x),s(x)) r10: f(|0|(),y,|0|(),u) -> true() r11: f(|0|(),y,s(z),u) -> false() r12: f(s(x),|0|(),z,u) -> f(x,u,-(z,s(x)),u) r13: f(s(x),s(y),z,u) -> if(<=(x,y),f(s(x),-(y,x),z,u),f(x,u,z,u)) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(s(x),s(y),z,u) -> f#(s(x),-(y,x),z,u) and R consists of: r1: -(x,|0|()) -> x r2: -(s(x),s(y)) -> -(x,y) r3: <=(|0|(),y) -> true() r4: <=(s(x),|0|()) -> false() r5: <=(s(x),s(y)) -> <=(x,y) r6: if(true(),x,y) -> x r7: if(false(),x,y) -> y r8: perfectp(|0|()) -> false() r9: perfectp(s(x)) -> f(x,s(|0|()),s(x),s(x)) r10: f(|0|(),y,|0|(),u) -> true() r11: f(|0|(),y,s(z),u) -> false() r12: f(s(x),|0|(),z,u) -> f(x,u,-(z,s(x)),u) r13: f(s(x),s(y),z,u) -> if(<=(x,y),f(s(x),-(y,x),z,u),f(x,u,z,u)) The set of usable rules consists of r1, r2 Take the reduction pair: lexicographic path order with precedence: precedence: |0| > - > s > f# argument filter: pi(f#) = 2 pi(s) = [1] pi(-) = 1 pi(|0|) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: -#(s(x),s(y)) -> -#(x,y) and R consists of: r1: -(x,|0|()) -> x r2: -(s(x),s(y)) -> -(x,y) r3: <=(|0|(),y) -> true() r4: <=(s(x),|0|()) -> false() r5: <=(s(x),s(y)) -> <=(x,y) r6: if(true(),x,y) -> x r7: if(false(),x,y) -> y r8: perfectp(|0|()) -> false() r9: perfectp(s(x)) -> f(x,s(|0|()),s(x),s(x)) r10: f(|0|(),y,|0|(),u) -> true() r11: f(|0|(),y,s(z),u) -> false() r12: f(s(x),|0|(),z,u) -> f(x,u,-(z,s(x)),u) r13: f(s(x),s(y),z,u) -> if(<=(x,y),f(s(x),-(y,x),z,u),f(x,u,z,u)) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic path order with precedence: precedence: s > -# argument filter: pi(-#) = [1, 2] pi(s) = [1] The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: <=#(s(x),s(y)) -> <=#(x,y) and R consists of: r1: -(x,|0|()) -> x r2: -(s(x),s(y)) -> -(x,y) r3: <=(|0|(),y) -> true() r4: <=(s(x),|0|()) -> false() r5: <=(s(x),s(y)) -> <=(x,y) r6: if(true(),x,y) -> x r7: if(false(),x,y) -> y r8: perfectp(|0|()) -> false() r9: perfectp(s(x)) -> f(x,s(|0|()),s(x),s(x)) r10: f(|0|(),y,|0|(),u) -> true() r11: f(|0|(),y,s(z),u) -> false() r12: f(s(x),|0|(),z,u) -> f(x,u,-(z,s(x)),u) r13: f(s(x),s(y),z,u) -> if(<=(x,y),f(s(x),-(y,x),z,u),f(x,u,z,u)) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic path order with precedence: precedence: s > <=# argument filter: pi(<=#) = [1, 2] pi(s) = [1] The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13 We remove them from the problem. Then no dependency pair remains.