YES We show the termination of the TRS R: h(f(x),y) -> f(g(x,y)) g(x,y) -> h(x,y) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: h#(f(x),y) -> g#(x,y) p2: g#(x,y) -> h#(x,y) and R consists of: r1: h(f(x),y) -> f(g(x,y)) r2: g(x,y) -> h(x,y) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: h#(f(x),y) -> g#(x,y) p2: g#(x,y) -> h#(x,y) and R consists of: r1: h(f(x),y) -> f(g(x,y)) r2: g(x,y) -> h(x,y) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic path order with precedence: precedence: g# > f > h# argument filter: pi(h#) = 1 pi(f) = [1] pi(g#) = 1 The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: g#(x,y) -> h#(x,y) and R consists of: r1: h(f(x),y) -> f(g(x,y)) r2: g(x,y) -> h(x,y) The estimated dependency graph contains the following SCCs: (no SCCs)