YES We show the termination of the TRS R: +(x,|0|()) -> x +(|0|(),x) -> x +(s(x),s(y)) -> s(s(+(x,y))) *(x,|0|()) -> |0|() *(|0|(),x) -> |0|() *(s(x),s(y)) -> s(+(*(x,y),+(x,y))) sum(nil()) -> |0|() sum(cons(x,l)) -> +(x,sum(l)) prod(nil()) -> s(|0|()) prod(cons(x,l)) -> *(x,prod(l)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: +#(s(x),s(y)) -> +#(x,y) p2: *#(s(x),s(y)) -> +#(*(x,y),+(x,y)) p3: *#(s(x),s(y)) -> *#(x,y) p4: *#(s(x),s(y)) -> +#(x,y) p5: sum#(cons(x,l)) -> +#(x,sum(l)) p6: sum#(cons(x,l)) -> sum#(l) p7: prod#(cons(x,l)) -> *#(x,prod(l)) p8: prod#(cons(x,l)) -> prod#(l) and R consists of: r1: +(x,|0|()) -> x r2: +(|0|(),x) -> x r3: +(s(x),s(y)) -> s(s(+(x,y))) r4: *(x,|0|()) -> |0|() r5: *(|0|(),x) -> |0|() r6: *(s(x),s(y)) -> s(+(*(x,y),+(x,y))) r7: sum(nil()) -> |0|() r8: sum(cons(x,l)) -> +(x,sum(l)) r9: prod(nil()) -> s(|0|()) r10: prod(cons(x,l)) -> *(x,prod(l)) The estimated dependency graph contains the following SCCs: {p6} {p8} {p3} {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: sum#(cons(x,l)) -> sum#(l) and R consists of: r1: +(x,|0|()) -> x r2: +(|0|(),x) -> x r3: +(s(x),s(y)) -> s(s(+(x,y))) r4: *(x,|0|()) -> |0|() r5: *(|0|(),x) -> |0|() r6: *(s(x),s(y)) -> s(+(*(x,y),+(x,y))) r7: sum(nil()) -> |0|() r8: sum(cons(x,l)) -> +(x,sum(l)) r9: prod(nil()) -> s(|0|()) r10: prod(cons(x,l)) -> *(x,prod(l)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic path order with precedence: precedence: cons > sum# argument filter: pi(sum#) = [1] pi(cons) = [2] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: prod#(cons(x,l)) -> prod#(l) and R consists of: r1: +(x,|0|()) -> x r2: +(|0|(),x) -> x r3: +(s(x),s(y)) -> s(s(+(x,y))) r4: *(x,|0|()) -> |0|() r5: *(|0|(),x) -> |0|() r6: *(s(x),s(y)) -> s(+(*(x,y),+(x,y))) r7: sum(nil()) -> |0|() r8: sum(cons(x,l)) -> +(x,sum(l)) r9: prod(nil()) -> s(|0|()) r10: prod(cons(x,l)) -> *(x,prod(l)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic path order with precedence: precedence: cons > prod# argument filter: pi(prod#) = [1] pi(cons) = [2] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: *#(s(x),s(y)) -> *#(x,y) and R consists of: r1: +(x,|0|()) -> x r2: +(|0|(),x) -> x r3: +(s(x),s(y)) -> s(s(+(x,y))) r4: *(x,|0|()) -> |0|() r5: *(|0|(),x) -> |0|() r6: *(s(x),s(y)) -> s(+(*(x,y),+(x,y))) r7: sum(nil()) -> |0|() r8: sum(cons(x,l)) -> +(x,sum(l)) r9: prod(nil()) -> s(|0|()) r10: prod(cons(x,l)) -> *(x,prod(l)) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic path order with precedence: precedence: s > *# argument filter: pi(*#) = [1, 2] pi(s) = [1] The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: +#(s(x),s(y)) -> +#(x,y) and R consists of: r1: +(x,|0|()) -> x r2: +(|0|(),x) -> x r3: +(s(x),s(y)) -> s(s(+(x,y))) r4: *(x,|0|()) -> |0|() r5: *(|0|(),x) -> |0|() r6: *(s(x),s(y)) -> s(+(*(x,y),+(x,y))) r7: sum(nil()) -> |0|() r8: sum(cons(x,l)) -> +(x,sum(l)) r9: prod(nil()) -> s(|0|()) r10: prod(cons(x,l)) -> *(x,prod(l)) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic path order with precedence: precedence: s > +# argument filter: pi(+#) = [1, 2] pi(s) = [1] The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10 We remove them from the problem. Then no dependency pair remains.