YES We show the termination of the TRS R: ack_in(|0|(),n) -> ack_out(s(n)) ack_in(s(m),|0|()) -> u11(ack_in(m,s(|0|()))) u11(ack_out(n)) -> ack_out(n) ack_in(s(m),s(n)) -> u21(ack_in(s(m),n),m) u21(ack_out(n),m) -> u22(ack_in(m,n)) u22(ack_out(n)) -> ack_out(n) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: ack_in#(s(m),|0|()) -> u11#(ack_in(m,s(|0|()))) p2: ack_in#(s(m),|0|()) -> ack_in#(m,s(|0|())) p3: ack_in#(s(m),s(n)) -> u21#(ack_in(s(m),n),m) p4: ack_in#(s(m),s(n)) -> ack_in#(s(m),n) p5: u21#(ack_out(n),m) -> u22#(ack_in(m,n)) p6: u21#(ack_out(n),m) -> ack_in#(m,n) and R consists of: r1: ack_in(|0|(),n) -> ack_out(s(n)) r2: ack_in(s(m),|0|()) -> u11(ack_in(m,s(|0|()))) r3: u11(ack_out(n)) -> ack_out(n) r4: ack_in(s(m),s(n)) -> u21(ack_in(s(m),n),m) r5: u21(ack_out(n),m) -> u22(ack_in(m,n)) r6: u22(ack_out(n)) -> ack_out(n) The estimated dependency graph contains the following SCCs: {p2, p3, p4, p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: ack_in#(s(m),|0|()) -> ack_in#(m,s(|0|())) p2: ack_in#(s(m),s(n)) -> ack_in#(s(m),n) p3: ack_in#(s(m),s(n)) -> u21#(ack_in(s(m),n),m) p4: u21#(ack_out(n),m) -> ack_in#(m,n) and R consists of: r1: ack_in(|0|(),n) -> ack_out(s(n)) r2: ack_in(s(m),|0|()) -> u11(ack_in(m,s(|0|()))) r3: u11(ack_out(n)) -> ack_out(n) r4: ack_in(s(m),s(n)) -> u21(ack_in(s(m),n),m) r5: u21(ack_out(n),m) -> u22(ack_in(m,n)) r6: u22(ack_out(n)) -> ack_out(n) The set of usable rules consists of r1, r2, r3, r4, r5, r6 Take the reduction pair: lexicographic path order with precedence: precedence: ack_in > u21 > u22 > |0| > u11 > ack_out > ack_in# > s > u21# argument filter: pi(ack_in#) = 1 pi(s) = [1] pi(|0|) = [] pi(u21#) = [2] pi(ack_in) = [1, 2] pi(ack_out) = [] pi(u22) = [] pi(u11) = [] pi(u21) = [] The next rules are strictly ordered: p1, p3, p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: ack_in#(s(m),s(n)) -> ack_in#(s(m),n) and R consists of: r1: ack_in(|0|(),n) -> ack_out(s(n)) r2: ack_in(s(m),|0|()) -> u11(ack_in(m,s(|0|()))) r3: u11(ack_out(n)) -> ack_out(n) r4: ack_in(s(m),s(n)) -> u21(ack_in(s(m),n),m) r5: u21(ack_out(n),m) -> u22(ack_in(m,n)) r6: u22(ack_out(n)) -> ack_out(n) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: ack_in#(s(m),s(n)) -> ack_in#(s(m),n) and R consists of: r1: ack_in(|0|(),n) -> ack_out(s(n)) r2: ack_in(s(m),|0|()) -> u11(ack_in(m,s(|0|()))) r3: u11(ack_out(n)) -> ack_out(n) r4: ack_in(s(m),s(n)) -> u21(ack_in(s(m),n),m) r5: u21(ack_out(n),m) -> u22(ack_in(m,n)) r6: u22(ack_out(n)) -> ack_out(n) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic path order with precedence: precedence: s > ack_in# argument filter: pi(ack_in#) = [2] pi(s) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.