YES

We show the termination of the TRS R:

  plus(x,|0|()) -> x
  plus(|0|(),y) -> y
  plus(s(x),y) -> s(plus(x,y))
  times(|0|(),y) -> |0|()
  times(s(|0|()),y) -> y
  times(s(x),y) -> plus(y,times(x,y))
  div(|0|(),y) -> |0|()
  div(x,y) -> quot(x,y,y)
  quot(|0|(),s(y),z) -> |0|()
  quot(s(x),s(y),z) -> quot(x,y,z)
  quot(x,|0|(),s(z)) -> s(div(x,s(z)))
  div(div(x,y),z) -> div(x,times(y,z))

-- SCC decomposition.

Consider the dependency pair problem (P, R), where P consists of

p1: plus#(s(x),y) -> plus#(x,y)
p2: times#(s(x),y) -> plus#(y,times(x,y))
p3: times#(s(x),y) -> times#(x,y)
p4: div#(x,y) -> quot#(x,y,y)
p5: quot#(s(x),s(y),z) -> quot#(x,y,z)
p6: quot#(x,|0|(),s(z)) -> div#(x,s(z))
p7: div#(div(x,y),z) -> div#(x,times(y,z))
p8: div#(div(x,y),z) -> times#(y,z)

and R consists of:

r1: plus(x,|0|()) -> x
r2: plus(|0|(),y) -> y
r3: plus(s(x),y) -> s(plus(x,y))
r4: times(|0|(),y) -> |0|()
r5: times(s(|0|()),y) -> y
r6: times(s(x),y) -> plus(y,times(x,y))
r7: div(|0|(),y) -> |0|()
r8: div(x,y) -> quot(x,y,y)
r9: quot(|0|(),s(y),z) -> |0|()
r10: quot(s(x),s(y),z) -> quot(x,y,z)
r11: quot(x,|0|(),s(z)) -> s(div(x,s(z)))
r12: div(div(x,y),z) -> div(x,times(y,z))

The estimated dependency graph contains the following SCCs:

  {p4, p5, p6, p7}
  {p3}
  {p1}


-- Reduction pair.

Consider the dependency pair problem (P, R), where P consists of

p1: div#(div(x,y),z) -> div#(x,times(y,z))
p2: div#(x,y) -> quot#(x,y,y)
p3: quot#(x,|0|(),s(z)) -> div#(x,s(z))
p4: quot#(s(x),s(y),z) -> quot#(x,y,z)

and R consists of:

r1: plus(x,|0|()) -> x
r2: plus(|0|(),y) -> y
r3: plus(s(x),y) -> s(plus(x,y))
r4: times(|0|(),y) -> |0|()
r5: times(s(|0|()),y) -> y
r6: times(s(x),y) -> plus(y,times(x,y))
r7: div(|0|(),y) -> |0|()
r8: div(x,y) -> quot(x,y,y)
r9: quot(|0|(),s(y),z) -> |0|()
r10: quot(s(x),s(y),z) -> quot(x,y,z)
r11: quot(x,|0|(),s(z)) -> s(div(x,s(z)))
r12: div(div(x,y),z) -> div(x,times(y,z))

The set of usable rules consists of

  r1, r2, r3, r4, r5, r6

Take the reduction pair:

  lexicographic path order with precedence:
  
    precedence:
    
      div > times > |0| > div# > plus > s > quot#
    
    argument filter:
  
      pi(div#) = 1
      pi(div) = [1, 2]
      pi(times) = [1, 2]
      pi(quot#) = 1
      pi(|0|) = []
      pi(s) = [1]
      pi(plus) = [1, 2]

The next rules are strictly ordered:

  p1, p4

We remove them from the problem.

-- SCC decomposition.

Consider the dependency pair problem (P, R), where P consists of

p1: div#(x,y) -> quot#(x,y,y)
p2: quot#(x,|0|(),s(z)) -> div#(x,s(z))

and R consists of:

r1: plus(x,|0|()) -> x
r2: plus(|0|(),y) -> y
r3: plus(s(x),y) -> s(plus(x,y))
r4: times(|0|(),y) -> |0|()
r5: times(s(|0|()),y) -> y
r6: times(s(x),y) -> plus(y,times(x,y))
r7: div(|0|(),y) -> |0|()
r8: div(x,y) -> quot(x,y,y)
r9: quot(|0|(),s(y),z) -> |0|()
r10: quot(s(x),s(y),z) -> quot(x,y,z)
r11: quot(x,|0|(),s(z)) -> s(div(x,s(z)))
r12: div(div(x,y),z) -> div(x,times(y,z))

The estimated dependency graph contains the following SCCs:

  {p1, p2}


-- Reduction pair.

Consider the dependency pair problem (P, R), where P consists of

p1: div#(x,y) -> quot#(x,y,y)
p2: quot#(x,|0|(),s(z)) -> div#(x,s(z))

and R consists of:

r1: plus(x,|0|()) -> x
r2: plus(|0|(),y) -> y
r3: plus(s(x),y) -> s(plus(x,y))
r4: times(|0|(),y) -> |0|()
r5: times(s(|0|()),y) -> y
r6: times(s(x),y) -> plus(y,times(x,y))
r7: div(|0|(),y) -> |0|()
r8: div(x,y) -> quot(x,y,y)
r9: quot(|0|(),s(y),z) -> |0|()
r10: quot(s(x),s(y),z) -> quot(x,y,z)
r11: quot(x,|0|(),s(z)) -> s(div(x,s(z)))
r12: div(div(x,y),z) -> div(x,times(y,z))

The set of usable rules consists of

  (no rules)

Take the reduction pair:

  lexicographic path order with precedence:
  
    precedence:
    
      |0| > div# > s > quot#
    
    argument filter:
  
      pi(div#) = [2]
      pi(quot#) = 2
      pi(|0|) = []
      pi(s) = []

The next rules are strictly ordered:

  p1, p2

We remove them from the problem.  Then no dependency pair remains.

-- Reduction pair.

Consider the dependency pair problem (P, R), where P consists of

p1: times#(s(x),y) -> times#(x,y)

and R consists of:

r1: plus(x,|0|()) -> x
r2: plus(|0|(),y) -> y
r3: plus(s(x),y) -> s(plus(x,y))
r4: times(|0|(),y) -> |0|()
r5: times(s(|0|()),y) -> y
r6: times(s(x),y) -> plus(y,times(x,y))
r7: div(|0|(),y) -> |0|()
r8: div(x,y) -> quot(x,y,y)
r9: quot(|0|(),s(y),z) -> |0|()
r10: quot(s(x),s(y),z) -> quot(x,y,z)
r11: quot(x,|0|(),s(z)) -> s(div(x,s(z)))
r12: div(div(x,y),z) -> div(x,times(y,z))

The set of usable rules consists of

  (no rules)

Take the monotone reduction pair:

  lexicographic path order with precedence:
  
    precedence:
    
      s > times#
    
    argument filter:
  
      pi(times#) = [1, 2]
      pi(s) = [1]

The next rules are strictly ordered:

  p1
  r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12

We remove them from the problem.  Then no dependency pair remains.

-- Reduction pair.

Consider the dependency pair problem (P, R), where P consists of

p1: plus#(s(x),y) -> plus#(x,y)

and R consists of:

r1: plus(x,|0|()) -> x
r2: plus(|0|(),y) -> y
r3: plus(s(x),y) -> s(plus(x,y))
r4: times(|0|(),y) -> |0|()
r5: times(s(|0|()),y) -> y
r6: times(s(x),y) -> plus(y,times(x,y))
r7: div(|0|(),y) -> |0|()
r8: div(x,y) -> quot(x,y,y)
r9: quot(|0|(),s(y),z) -> |0|()
r10: quot(s(x),s(y),z) -> quot(x,y,z)
r11: quot(x,|0|(),s(z)) -> s(div(x,s(z)))
r12: div(div(x,y),z) -> div(x,times(y,z))

The set of usable rules consists of

  (no rules)

Take the monotone reduction pair:

  lexicographic path order with precedence:
  
    precedence:
    
      s > plus#
    
    argument filter:
  
      pi(plus#) = [1, 2]
      pi(s) = [1]

The next rules are strictly ordered:

  p1
  r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12

We remove them from the problem.  Then no dependency pair remains.