YES

We show the termination of the TRS R:

  minus(x,|0|()) -> x
  minus(s(x),s(y)) -> minus(x,y)
  quot(|0|(),s(y)) -> |0|()
  quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
  le(|0|(),y) -> true()
  le(s(x),|0|()) -> false()
  le(s(x),s(y)) -> le(x,y)
  app(nil(),y) -> y
  app(add(n,x),y) -> add(n,app(x,y))
  low(n,nil()) -> nil()
  low(n,add(m,x)) -> if_low(le(m,n),n,add(m,x))
  if_low(true(),n,add(m,x)) -> add(m,low(n,x))
  if_low(false(),n,add(m,x)) -> low(n,x)
  high(n,nil()) -> nil()
  high(n,add(m,x)) -> if_high(le(m,n),n,add(m,x))
  if_high(true(),n,add(m,x)) -> high(n,x)
  if_high(false(),n,add(m,x)) -> add(m,high(n,x))
  quicksort(nil()) -> nil()
  quicksort(add(n,x)) -> app(quicksort(low(n,x)),add(n,quicksort(high(n,x))))

-- SCC decomposition.

Consider the dependency pair problem (P, R), where P consists of

p1: minus#(s(x),s(y)) -> minus#(x,y)
p2: quot#(s(x),s(y)) -> quot#(minus(x,y),s(y))
p3: quot#(s(x),s(y)) -> minus#(x,y)
p4: le#(s(x),s(y)) -> le#(x,y)
p5: app#(add(n,x),y) -> app#(x,y)
p6: low#(n,add(m,x)) -> if_low#(le(m,n),n,add(m,x))
p7: low#(n,add(m,x)) -> le#(m,n)
p8: if_low#(true(),n,add(m,x)) -> low#(n,x)
p9: if_low#(false(),n,add(m,x)) -> low#(n,x)
p10: high#(n,add(m,x)) -> if_high#(le(m,n),n,add(m,x))
p11: high#(n,add(m,x)) -> le#(m,n)
p12: if_high#(true(),n,add(m,x)) -> high#(n,x)
p13: if_high#(false(),n,add(m,x)) -> high#(n,x)
p14: quicksort#(add(n,x)) -> app#(quicksort(low(n,x)),add(n,quicksort(high(n,x))))
p15: quicksort#(add(n,x)) -> quicksort#(low(n,x))
p16: quicksort#(add(n,x)) -> low#(n,x)
p17: quicksort#(add(n,x)) -> quicksort#(high(n,x))
p18: quicksort#(add(n,x)) -> high#(n,x)

and R consists of:

r1: minus(x,|0|()) -> x
r2: minus(s(x),s(y)) -> minus(x,y)
r3: quot(|0|(),s(y)) -> |0|()
r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
r5: le(|0|(),y) -> true()
r6: le(s(x),|0|()) -> false()
r7: le(s(x),s(y)) -> le(x,y)
r8: app(nil(),y) -> y
r9: app(add(n,x),y) -> add(n,app(x,y))
r10: low(n,nil()) -> nil()
r11: low(n,add(m,x)) -> if_low(le(m,n),n,add(m,x))
r12: if_low(true(),n,add(m,x)) -> add(m,low(n,x))
r13: if_low(false(),n,add(m,x)) -> low(n,x)
r14: high(n,nil()) -> nil()
r15: high(n,add(m,x)) -> if_high(le(m,n),n,add(m,x))
r16: if_high(true(),n,add(m,x)) -> high(n,x)
r17: if_high(false(),n,add(m,x)) -> add(m,high(n,x))
r18: quicksort(nil()) -> nil()
r19: quicksort(add(n,x)) -> app(quicksort(low(n,x)),add(n,quicksort(high(n,x))))

The estimated dependency graph contains the following SCCs:

  {p2}
  {p1}
  {p15, p17}
  {p10, p12, p13}
  {p6, p8, p9}
  {p4}
  {p5}


-- Reduction pair.

Consider the dependency pair problem (P, R), where P consists of

p1: quot#(s(x),s(y)) -> quot#(minus(x,y),s(y))

and R consists of:

r1: minus(x,|0|()) -> x
r2: minus(s(x),s(y)) -> minus(x,y)
r3: quot(|0|(),s(y)) -> |0|()
r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
r5: le(|0|(),y) -> true()
r6: le(s(x),|0|()) -> false()
r7: le(s(x),s(y)) -> le(x,y)
r8: app(nil(),y) -> y
r9: app(add(n,x),y) -> add(n,app(x,y))
r10: low(n,nil()) -> nil()
r11: low(n,add(m,x)) -> if_low(le(m,n),n,add(m,x))
r12: if_low(true(),n,add(m,x)) -> add(m,low(n,x))
r13: if_low(false(),n,add(m,x)) -> low(n,x)
r14: high(n,nil()) -> nil()
r15: high(n,add(m,x)) -> if_high(le(m,n),n,add(m,x))
r16: if_high(true(),n,add(m,x)) -> high(n,x)
r17: if_high(false(),n,add(m,x)) -> add(m,high(n,x))
r18: quicksort(nil()) -> nil()
r19: quicksort(add(n,x)) -> app(quicksort(low(n,x)),add(n,quicksort(high(n,x))))

The set of usable rules consists of

  r1, r2

Take the reduction pair:

  lexicographic path order with precedence:
  
    precedence:
    
      |0| > minus > s > quot#
    
    argument filter:
  
      pi(quot#) = 1
      pi(s) = [1]
      pi(minus) = 1
      pi(|0|) = []

The next rules are strictly ordered:

  p1

We remove them from the problem.  Then no dependency pair remains.

-- Reduction pair.

Consider the dependency pair problem (P, R), where P consists of

p1: minus#(s(x),s(y)) -> minus#(x,y)

and R consists of:

r1: minus(x,|0|()) -> x
r2: minus(s(x),s(y)) -> minus(x,y)
r3: quot(|0|(),s(y)) -> |0|()
r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
r5: le(|0|(),y) -> true()
r6: le(s(x),|0|()) -> false()
r7: le(s(x),s(y)) -> le(x,y)
r8: app(nil(),y) -> y
r9: app(add(n,x),y) -> add(n,app(x,y))
r10: low(n,nil()) -> nil()
r11: low(n,add(m,x)) -> if_low(le(m,n),n,add(m,x))
r12: if_low(true(),n,add(m,x)) -> add(m,low(n,x))
r13: if_low(false(),n,add(m,x)) -> low(n,x)
r14: high(n,nil()) -> nil()
r15: high(n,add(m,x)) -> if_high(le(m,n),n,add(m,x))
r16: if_high(true(),n,add(m,x)) -> high(n,x)
r17: if_high(false(),n,add(m,x)) -> add(m,high(n,x))
r18: quicksort(nil()) -> nil()
r19: quicksort(add(n,x)) -> app(quicksort(low(n,x)),add(n,quicksort(high(n,x))))

The set of usable rules consists of

  (no rules)

Take the monotone reduction pair:

  lexicographic path order with precedence:
  
    precedence:
    
      s > minus#
    
    argument filter:
  
      pi(minus#) = [1, 2]
      pi(s) = [1]

The next rules are strictly ordered:

  p1
  r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19

We remove them from the problem.  Then no dependency pair remains.

-- Reduction pair.

Consider the dependency pair problem (P, R), where P consists of

p1: quicksort#(add(n,x)) -> quicksort#(high(n,x))
p2: quicksort#(add(n,x)) -> quicksort#(low(n,x))

and R consists of:

r1: minus(x,|0|()) -> x
r2: minus(s(x),s(y)) -> minus(x,y)
r3: quot(|0|(),s(y)) -> |0|()
r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
r5: le(|0|(),y) -> true()
r6: le(s(x),|0|()) -> false()
r7: le(s(x),s(y)) -> le(x,y)
r8: app(nil(),y) -> y
r9: app(add(n,x),y) -> add(n,app(x,y))
r10: low(n,nil()) -> nil()
r11: low(n,add(m,x)) -> if_low(le(m,n),n,add(m,x))
r12: if_low(true(),n,add(m,x)) -> add(m,low(n,x))
r13: if_low(false(),n,add(m,x)) -> low(n,x)
r14: high(n,nil()) -> nil()
r15: high(n,add(m,x)) -> if_high(le(m,n),n,add(m,x))
r16: if_high(true(),n,add(m,x)) -> high(n,x)
r17: if_high(false(),n,add(m,x)) -> add(m,high(n,x))
r18: quicksort(nil()) -> nil()
r19: quicksort(add(n,x)) -> app(quicksort(low(n,x)),add(n,quicksort(high(n,x))))

The set of usable rules consists of

  r5, r6, r7, r10, r11, r12, r13, r14, r15, r16, r17

Take the reduction pair:

  lexicographic path order with precedence:
  
    precedence:
    
      low > le > false > add > s > true > high > if_high > nil > if_low > |0| > quicksort#
    
    argument filter:
  
      pi(quicksort#) = 1
      pi(add) = [2]
      pi(high) = 2
      pi(low) = 2
      pi(le) = []
      pi(|0|) = []
      pi(true) = []
      pi(s) = []
      pi(false) = []
      pi(if_low) = 3
      pi(if_high) = 3
      pi(nil) = []

The next rules are strictly ordered:

  p1, p2

We remove them from the problem.  Then no dependency pair remains.

-- Reduction pair.

Consider the dependency pair problem (P, R), where P consists of

p1: if_high#(false(),n,add(m,x)) -> high#(n,x)
p2: high#(n,add(m,x)) -> if_high#(le(m,n),n,add(m,x))
p3: if_high#(true(),n,add(m,x)) -> high#(n,x)

and R consists of:

r1: minus(x,|0|()) -> x
r2: minus(s(x),s(y)) -> minus(x,y)
r3: quot(|0|(),s(y)) -> |0|()
r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
r5: le(|0|(),y) -> true()
r6: le(s(x),|0|()) -> false()
r7: le(s(x),s(y)) -> le(x,y)
r8: app(nil(),y) -> y
r9: app(add(n,x),y) -> add(n,app(x,y))
r10: low(n,nil()) -> nil()
r11: low(n,add(m,x)) -> if_low(le(m,n),n,add(m,x))
r12: if_low(true(),n,add(m,x)) -> add(m,low(n,x))
r13: if_low(false(),n,add(m,x)) -> low(n,x)
r14: high(n,nil()) -> nil()
r15: high(n,add(m,x)) -> if_high(le(m,n),n,add(m,x))
r16: if_high(true(),n,add(m,x)) -> high(n,x)
r17: if_high(false(),n,add(m,x)) -> add(m,high(n,x))
r18: quicksort(nil()) -> nil()
r19: quicksort(add(n,x)) -> app(quicksort(low(n,x)),add(n,quicksort(high(n,x))))

The set of usable rules consists of

  r5, r6, r7

Take the reduction pair:

  lexicographic path order with precedence:
  
    precedence:
    
      |0| > true > add > high# > s > false > if_high# > le
    
    argument filter:
  
      pi(if_high#) = 3
      pi(false) = []
      pi(add) = [2]
      pi(high#) = [2]
      pi(le) = 1
      pi(true) = []
      pi(|0|) = []
      pi(s) = [1]

The next rules are strictly ordered:

  p1, p2, p3

We remove them from the problem.  Then no dependency pair remains.

-- Reduction pair.

Consider the dependency pair problem (P, R), where P consists of

p1: if_low#(false(),n,add(m,x)) -> low#(n,x)
p2: low#(n,add(m,x)) -> if_low#(le(m,n),n,add(m,x))
p3: if_low#(true(),n,add(m,x)) -> low#(n,x)

and R consists of:

r1: minus(x,|0|()) -> x
r2: minus(s(x),s(y)) -> minus(x,y)
r3: quot(|0|(),s(y)) -> |0|()
r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
r5: le(|0|(),y) -> true()
r6: le(s(x),|0|()) -> false()
r7: le(s(x),s(y)) -> le(x,y)
r8: app(nil(),y) -> y
r9: app(add(n,x),y) -> add(n,app(x,y))
r10: low(n,nil()) -> nil()
r11: low(n,add(m,x)) -> if_low(le(m,n),n,add(m,x))
r12: if_low(true(),n,add(m,x)) -> add(m,low(n,x))
r13: if_low(false(),n,add(m,x)) -> low(n,x)
r14: high(n,nil()) -> nil()
r15: high(n,add(m,x)) -> if_high(le(m,n),n,add(m,x))
r16: if_high(true(),n,add(m,x)) -> high(n,x)
r17: if_high(false(),n,add(m,x)) -> add(m,high(n,x))
r18: quicksort(nil()) -> nil()
r19: quicksort(add(n,x)) -> app(quicksort(low(n,x)),add(n,quicksort(high(n,x))))

The set of usable rules consists of

  r5, r6, r7

Take the reduction pair:

  lexicographic path order with precedence:
  
    precedence:
    
      |0| > add > true > low# > s > le > false > if_low#
    
    argument filter:
  
      pi(if_low#) = [3]
      pi(false) = []
      pi(add) = [1, 2]
      pi(low#) = [2]
      pi(le) = 1
      pi(true) = []
      pi(|0|) = []
      pi(s) = [1]

The next rules are strictly ordered:

  p1, p2, p3

We remove them from the problem.  Then no dependency pair remains.

-- Reduction pair.

Consider the dependency pair problem (P, R), where P consists of

p1: le#(s(x),s(y)) -> le#(x,y)

and R consists of:

r1: minus(x,|0|()) -> x
r2: minus(s(x),s(y)) -> minus(x,y)
r3: quot(|0|(),s(y)) -> |0|()
r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
r5: le(|0|(),y) -> true()
r6: le(s(x),|0|()) -> false()
r7: le(s(x),s(y)) -> le(x,y)
r8: app(nil(),y) -> y
r9: app(add(n,x),y) -> add(n,app(x,y))
r10: low(n,nil()) -> nil()
r11: low(n,add(m,x)) -> if_low(le(m,n),n,add(m,x))
r12: if_low(true(),n,add(m,x)) -> add(m,low(n,x))
r13: if_low(false(),n,add(m,x)) -> low(n,x)
r14: high(n,nil()) -> nil()
r15: high(n,add(m,x)) -> if_high(le(m,n),n,add(m,x))
r16: if_high(true(),n,add(m,x)) -> high(n,x)
r17: if_high(false(),n,add(m,x)) -> add(m,high(n,x))
r18: quicksort(nil()) -> nil()
r19: quicksort(add(n,x)) -> app(quicksort(low(n,x)),add(n,quicksort(high(n,x))))

The set of usable rules consists of

  (no rules)

Take the monotone reduction pair:

  lexicographic path order with precedence:
  
    precedence:
    
      s > le#
    
    argument filter:
  
      pi(le#) = [1, 2]
      pi(s) = [1]

The next rules are strictly ordered:

  p1
  r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19

We remove them from the problem.  Then no dependency pair remains.

-- Reduction pair.

Consider the dependency pair problem (P, R), where P consists of

p1: app#(add(n,x),y) -> app#(x,y)

and R consists of:

r1: minus(x,|0|()) -> x
r2: minus(s(x),s(y)) -> minus(x,y)
r3: quot(|0|(),s(y)) -> |0|()
r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
r5: le(|0|(),y) -> true()
r6: le(s(x),|0|()) -> false()
r7: le(s(x),s(y)) -> le(x,y)
r8: app(nil(),y) -> y
r9: app(add(n,x),y) -> add(n,app(x,y))
r10: low(n,nil()) -> nil()
r11: low(n,add(m,x)) -> if_low(le(m,n),n,add(m,x))
r12: if_low(true(),n,add(m,x)) -> add(m,low(n,x))
r13: if_low(false(),n,add(m,x)) -> low(n,x)
r14: high(n,nil()) -> nil()
r15: high(n,add(m,x)) -> if_high(le(m,n),n,add(m,x))
r16: if_high(true(),n,add(m,x)) -> high(n,x)
r17: if_high(false(),n,add(m,x)) -> add(m,high(n,x))
r18: quicksort(nil()) -> nil()
r19: quicksort(add(n,x)) -> app(quicksort(low(n,x)),add(n,quicksort(high(n,x))))

The set of usable rules consists of

  (no rules)

Take the reduction pair:

  lexicographic path order with precedence:
  
    precedence:
    
      add > app#
    
    argument filter:
  
      pi(app#) = [1]
      pi(add) = [1, 2]

The next rules are strictly ordered:

  p1

We remove them from the problem.  Then no dependency pair remains.