YES We show the termination of the TRS R: f(|0|()) -> true() f(|1|()) -> false() f(s(x)) -> f(x) if(true(),s(x),s(y)) -> s(x) if(false(),s(x),s(y)) -> s(y) g(x,c(y)) -> c(g(x,y)) g(x,c(y)) -> g(x,if(f(x),c(g(s(x),y)),c(y))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(s(x)) -> f#(x) p2: g#(x,c(y)) -> g#(x,y) p3: g#(x,c(y)) -> g#(x,if(f(x),c(g(s(x),y)),c(y))) p4: g#(x,c(y)) -> if#(f(x),c(g(s(x),y)),c(y)) p5: g#(x,c(y)) -> f#(x) p6: g#(x,c(y)) -> g#(s(x),y) and R consists of: r1: f(|0|()) -> true() r2: f(|1|()) -> false() r3: f(s(x)) -> f(x) r4: if(true(),s(x),s(y)) -> s(x) r5: if(false(),s(x),s(y)) -> s(y) r6: g(x,c(y)) -> c(g(x,y)) r7: g(x,c(y)) -> g(x,if(f(x),c(g(s(x),y)),c(y))) The estimated dependency graph contains the following SCCs: {p2, p6} {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: g#(x,c(y)) -> g#(s(x),y) p2: g#(x,c(y)) -> g#(x,y) and R consists of: r1: f(|0|()) -> true() r2: f(|1|()) -> false() r3: f(s(x)) -> f(x) r4: if(true(),s(x),s(y)) -> s(x) r5: if(false(),s(x),s(y)) -> s(y) r6: g(x,c(y)) -> c(g(x,y)) r7: g(x,c(y)) -> g(x,if(f(x),c(g(s(x),y)),c(y))) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic path order with precedence: precedence: s > c > g# argument filter: pi(g#) = [2] pi(c) = [1] pi(s) = [1] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(s(x)) -> f#(x) and R consists of: r1: f(|0|()) -> true() r2: f(|1|()) -> false() r3: f(s(x)) -> f(x) r4: if(true(),s(x),s(y)) -> s(x) r5: if(false(),s(x),s(y)) -> s(y) r6: g(x,c(y)) -> c(g(x,y)) r7: g(x,c(y)) -> g(x,if(f(x),c(g(s(x),y)),c(y))) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic path order with precedence: precedence: s > f# argument filter: pi(f#) = [1] pi(s) = [1] The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7 We remove them from the problem. Then no dependency pair remains.