YES We show the termination of the TRS R: f(f(x)) -> f(g(f(x),x)) f(f(x)) -> f(h(f(x),f(x))) g(x,y) -> y h(x,x) -> g(x,|0|()) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(f(x)) -> f#(g(f(x),x)) p2: f#(f(x)) -> g#(f(x),x) p3: f#(f(x)) -> f#(h(f(x),f(x))) p4: f#(f(x)) -> h#(f(x),f(x)) p5: h#(x,x) -> g#(x,|0|()) and R consists of: r1: f(f(x)) -> f(g(f(x),x)) r2: f(f(x)) -> f(h(f(x),f(x))) r3: g(x,y) -> y r4: h(x,x) -> g(x,|0|()) The estimated dependency graph contains the following SCCs: {p1, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(f(x)) -> f#(g(f(x),x)) p2: f#(f(x)) -> f#(h(f(x),f(x))) and R consists of: r1: f(f(x)) -> f(g(f(x),x)) r2: f(f(x)) -> f(h(f(x),f(x))) r3: g(x,y) -> y r4: h(x,x) -> g(x,|0|()) The set of usable rules consists of r1, r2, r3, r4 Take the reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: f#_A(x1) = ((0,0,0,0),(0,0,0,0),(0,0,0,0),(1,0,0,0)) x1 f_A(x1) = ((1,0,0,0),(1,1,0,0),(0,0,0,0),(0,1,0,0)) x1 + (1,5,1,0) g_A(x1,x2) = ((0,0,0,0),(1,0,0,0),(0,0,0,0),(0,0,0,0)) x1 + ((1,0,0,0),(0,1,0,0),(0,0,0,0),(0,1,0,0)) x2 + (0,1,1,1) h_A(x1,x2) = ((1,0,0,0),(1,0,0,0),(0,0,0,0),(0,0,0,0)) x1 + (0,3,2,3) |0|_A() = (0,1,1,1) The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(f(x)) -> f#(h(f(x),f(x))) and R consists of: r1: f(f(x)) -> f(g(f(x),x)) r2: f(f(x)) -> f(h(f(x),f(x))) r3: g(x,y) -> y r4: h(x,x) -> g(x,|0|()) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(f(x)) -> f#(h(f(x),f(x))) and R consists of: r1: f(f(x)) -> f(g(f(x),x)) r2: f(f(x)) -> f(h(f(x),f(x))) r3: g(x,y) -> y r4: h(x,x) -> g(x,|0|()) The set of usable rules consists of r1, r2, r3, r4 Take the reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: f#_A(x1) = ((1,0,0,0),(0,1,0,0),(1,0,0,0),(1,1,0,0)) x1 f_A(x1) = x1 + (4,3,1,1) h_A(x1,x2) = ((0,0,0,0),(1,0,0,0),(0,0,0,0),(0,0,0,0)) x2 + (2,0,1,1) g_A(x1,x2) = ((0,0,0,0),(0,0,0,0),(1,0,0,0),(0,0,0,0)) x1 + x2 + (0,1,2,2) |0|_A() = (1,1,1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.