YES We show the termination of the TRS R: O(|0|()) -> |0|() +(|0|(),x) -> x +(x,|0|()) -> x +(O(x),O(y)) -> O(+(x,y)) +(O(x),I(y)) -> I(+(x,y)) +(I(x),O(y)) -> I(+(x,y)) +(I(x),I(y)) -> O(+(+(x,y),I(|0|()))) +(x,+(y,z)) -> +(+(x,y),z) -(x,|0|()) -> x -(|0|(),x) -> |0|() -(O(x),O(y)) -> O(-(x,y)) -(O(x),I(y)) -> I(-(-(x,y),I(|1|()))) -(I(x),O(y)) -> I(-(x,y)) -(I(x),I(y)) -> O(-(x,y)) not(true()) -> false() not(false()) -> true() and(x,true()) -> x and(x,false()) -> false() if(true(),x,y) -> x if(false(),x,y) -> y ge(O(x),O(y)) -> ge(x,y) ge(O(x),I(y)) -> not(ge(y,x)) ge(I(x),O(y)) -> ge(x,y) ge(I(x),I(y)) -> ge(x,y) ge(x,|0|()) -> true() ge(|0|(),O(x)) -> ge(|0|(),x) ge(|0|(),I(x)) -> false() |Log'|(|0|()) -> |0|() |Log'|(I(x)) -> +(|Log'|(x),I(|0|())) |Log'|(O(x)) -> if(ge(x,I(|0|())),+(|Log'|(x),I(|0|())),|0|()) Log(x) -> -(|Log'|(x),I(|0|())) Val(L(x)) -> x Val(N(x,l(),r())) -> x Min(L(x)) -> x Min(N(x,l(),r())) -> Min(l()) Max(L(x)) -> x Max(N(x,l(),r())) -> Max(r()) BS(L(x)) -> true() BS(N(x,l(),r())) -> and(and(ge(x,Max(l())),ge(Min(r()),x)),and(BS(l()),BS(r()))) Size(L(x)) -> I(|0|()) Size(N(x,l(),r())) -> +(+(Size(l()),Size(r())),I(|1|())) WB(L(x)) -> true() WB(N(x,l(),r())) -> and(if(ge(Size(l()),Size(r())),ge(I(|0|()),-(Size(l()),Size(r()))),ge(I(|0|()),-(Size(r()),Size(l())))),and(WB(l()),WB(r()))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: +#(O(x),O(y)) -> O#(+(x,y)) p2: +#(O(x),O(y)) -> +#(x,y) p3: +#(O(x),I(y)) -> +#(x,y) p4: +#(I(x),O(y)) -> +#(x,y) p5: +#(I(x),I(y)) -> O#(+(+(x,y),I(|0|()))) p6: +#(I(x),I(y)) -> +#(+(x,y),I(|0|())) p7: +#(I(x),I(y)) -> +#(x,y) p8: +#(x,+(y,z)) -> +#(+(x,y),z) p9: +#(x,+(y,z)) -> +#(x,y) p10: -#(O(x),O(y)) -> O#(-(x,y)) p11: -#(O(x),O(y)) -> -#(x,y) p12: -#(O(x),I(y)) -> -#(-(x,y),I(|1|())) p13: -#(O(x),I(y)) -> -#(x,y) p14: -#(I(x),O(y)) -> -#(x,y) p15: -#(I(x),I(y)) -> O#(-(x,y)) p16: -#(I(x),I(y)) -> -#(x,y) p17: ge#(O(x),O(y)) -> ge#(x,y) p18: ge#(O(x),I(y)) -> not#(ge(y,x)) p19: ge#(O(x),I(y)) -> ge#(y,x) p20: ge#(I(x),O(y)) -> ge#(x,y) p21: ge#(I(x),I(y)) -> ge#(x,y) p22: ge#(|0|(),O(x)) -> ge#(|0|(),x) p23: |Log'|#(I(x)) -> +#(|Log'|(x),I(|0|())) p24: |Log'|#(I(x)) -> |Log'|#(x) p25: |Log'|#(O(x)) -> if#(ge(x,I(|0|())),+(|Log'|(x),I(|0|())),|0|()) p26: |Log'|#(O(x)) -> ge#(x,I(|0|())) p27: |Log'|#(O(x)) -> +#(|Log'|(x),I(|0|())) p28: |Log'|#(O(x)) -> |Log'|#(x) p29: Log#(x) -> -#(|Log'|(x),I(|0|())) p30: Log#(x) -> |Log'|#(x) p31: Min#(N(x,l(),r())) -> Min#(l()) p32: Max#(N(x,l(),r())) -> Max#(r()) p33: BS#(N(x,l(),r())) -> and#(and(ge(x,Max(l())),ge(Min(r()),x)),and(BS(l()),BS(r()))) p34: BS#(N(x,l(),r())) -> and#(ge(x,Max(l())),ge(Min(r()),x)) p35: BS#(N(x,l(),r())) -> ge#(x,Max(l())) p36: BS#(N(x,l(),r())) -> Max#(l()) p37: BS#(N(x,l(),r())) -> ge#(Min(r()),x) p38: BS#(N(x,l(),r())) -> Min#(r()) p39: BS#(N(x,l(),r())) -> and#(BS(l()),BS(r())) p40: BS#(N(x,l(),r())) -> BS#(l()) p41: BS#(N(x,l(),r())) -> BS#(r()) p42: Size#(N(x,l(),r())) -> +#(+(Size(l()),Size(r())),I(|1|())) p43: Size#(N(x,l(),r())) -> +#(Size(l()),Size(r())) p44: Size#(N(x,l(),r())) -> Size#(l()) p45: Size#(N(x,l(),r())) -> Size#(r()) p46: WB#(N(x,l(),r())) -> and#(if(ge(Size(l()),Size(r())),ge(I(|0|()),-(Size(l()),Size(r()))),ge(I(|0|()),-(Size(r()),Size(l())))),and(WB(l()),WB(r()))) p47: WB#(N(x,l(),r())) -> if#(ge(Size(l()),Size(r())),ge(I(|0|()),-(Size(l()),Size(r()))),ge(I(|0|()),-(Size(r()),Size(l())))) p48: WB#(N(x,l(),r())) -> ge#(Size(l()),Size(r())) p49: WB#(N(x,l(),r())) -> Size#(l()) p50: WB#(N(x,l(),r())) -> Size#(r()) p51: WB#(N(x,l(),r())) -> ge#(I(|0|()),-(Size(l()),Size(r()))) p52: WB#(N(x,l(),r())) -> -#(Size(l()),Size(r())) p53: WB#(N(x,l(),r())) -> ge#(I(|0|()),-(Size(r()),Size(l()))) p54: WB#(N(x,l(),r())) -> -#(Size(r()),Size(l())) p55: WB#(N(x,l(),r())) -> and#(WB(l()),WB(r())) p56: WB#(N(x,l(),r())) -> WB#(l()) p57: WB#(N(x,l(),r())) -> WB#(r()) and R consists of: r1: O(|0|()) -> |0|() r2: +(|0|(),x) -> x r3: +(x,|0|()) -> x r4: +(O(x),O(y)) -> O(+(x,y)) r5: +(O(x),I(y)) -> I(+(x,y)) r6: +(I(x),O(y)) -> I(+(x,y)) r7: +(I(x),I(y)) -> O(+(+(x,y),I(|0|()))) r8: +(x,+(y,z)) -> +(+(x,y),z) r9: -(x,|0|()) -> x r10: -(|0|(),x) -> |0|() r11: -(O(x),O(y)) -> O(-(x,y)) r12: -(O(x),I(y)) -> I(-(-(x,y),I(|1|()))) r13: -(I(x),O(y)) -> I(-(x,y)) r14: -(I(x),I(y)) -> O(-(x,y)) r15: not(true()) -> false() r16: not(false()) -> true() r17: and(x,true()) -> x r18: and(x,false()) -> false() r19: if(true(),x,y) -> x r20: if(false(),x,y) -> y r21: ge(O(x),O(y)) -> ge(x,y) r22: ge(O(x),I(y)) -> not(ge(y,x)) r23: ge(I(x),O(y)) -> ge(x,y) r24: ge(I(x),I(y)) -> ge(x,y) r25: ge(x,|0|()) -> true() r26: ge(|0|(),O(x)) -> ge(|0|(),x) r27: ge(|0|(),I(x)) -> false() r28: |Log'|(|0|()) -> |0|() r29: |Log'|(I(x)) -> +(|Log'|(x),I(|0|())) r30: |Log'|(O(x)) -> if(ge(x,I(|0|())),+(|Log'|(x),I(|0|())),|0|()) r31: Log(x) -> -(|Log'|(x),I(|0|())) r32: Val(L(x)) -> x r33: Val(N(x,l(),r())) -> x r34: Min(L(x)) -> x r35: Min(N(x,l(),r())) -> Min(l()) r36: Max(L(x)) -> x r37: Max(N(x,l(),r())) -> Max(r()) r38: BS(L(x)) -> true() r39: BS(N(x,l(),r())) -> and(and(ge(x,Max(l())),ge(Min(r()),x)),and(BS(l()),BS(r()))) r40: Size(L(x)) -> I(|0|()) r41: Size(N(x,l(),r())) -> +(+(Size(l()),Size(r())),I(|1|())) r42: WB(L(x)) -> true() r43: WB(N(x,l(),r())) -> and(if(ge(Size(l()),Size(r())),ge(I(|0|()),-(Size(l()),Size(r()))),ge(I(|0|()),-(Size(r()),Size(l())))),and(WB(l()),WB(r()))) The estimated dependency graph contains the following SCCs: {p24, p28} {p2, p3, p4, p6, p7, p8, p9} {p11, p12, p13, p14, p16} {p17, p19, p20, p21} {p22} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: |Log'|#(O(x)) -> |Log'|#(x) p2: |Log'|#(I(x)) -> |Log'|#(x) and R consists of: r1: O(|0|()) -> |0|() r2: +(|0|(),x) -> x r3: +(x,|0|()) -> x r4: +(O(x),O(y)) -> O(+(x,y)) r5: +(O(x),I(y)) -> I(+(x,y)) r6: +(I(x),O(y)) -> I(+(x,y)) r7: +(I(x),I(y)) -> O(+(+(x,y),I(|0|()))) r8: +(x,+(y,z)) -> +(+(x,y),z) r9: -(x,|0|()) -> x r10: -(|0|(),x) -> |0|() r11: -(O(x),O(y)) -> O(-(x,y)) r12: -(O(x),I(y)) -> I(-(-(x,y),I(|1|()))) r13: -(I(x),O(y)) -> I(-(x,y)) r14: -(I(x),I(y)) -> O(-(x,y)) r15: not(true()) -> false() r16: not(false()) -> true() r17: and(x,true()) -> x r18: and(x,false()) -> false() r19: if(true(),x,y) -> x r20: if(false(),x,y) -> y r21: ge(O(x),O(y)) -> ge(x,y) r22: ge(O(x),I(y)) -> not(ge(y,x)) r23: ge(I(x),O(y)) -> ge(x,y) r24: ge(I(x),I(y)) -> ge(x,y) r25: ge(x,|0|()) -> true() r26: ge(|0|(),O(x)) -> ge(|0|(),x) r27: ge(|0|(),I(x)) -> false() r28: |Log'|(|0|()) -> |0|() r29: |Log'|(I(x)) -> +(|Log'|(x),I(|0|())) r30: |Log'|(O(x)) -> if(ge(x,I(|0|())),+(|Log'|(x),I(|0|())),|0|()) r31: Log(x) -> -(|Log'|(x),I(|0|())) r32: Val(L(x)) -> x r33: Val(N(x,l(),r())) -> x r34: Min(L(x)) -> x r35: Min(N(x,l(),r())) -> Min(l()) r36: Max(L(x)) -> x r37: Max(N(x,l(),r())) -> Max(r()) r38: BS(L(x)) -> true() r39: BS(N(x,l(),r())) -> and(and(ge(x,Max(l())),ge(Min(r()),x)),and(BS(l()),BS(r()))) r40: Size(L(x)) -> I(|0|()) r41: Size(N(x,l(),r())) -> +(+(Size(l()),Size(r())),I(|1|())) r42: WB(L(x)) -> true() r43: WB(N(x,l(),r())) -> and(if(ge(Size(l()),Size(r())),ge(I(|0|()),-(Size(l()),Size(r()))),ge(I(|0|()),-(Size(r()),Size(l())))),and(WB(l()),WB(r()))) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: |Log'|#_A(x1) = ((1,0,0,0),(0,1,0,0),(0,0,1,0),(0,1,1,1)) x1 O_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) I_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,0,1,1)) x1 + (1,1,1,1) The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: +#(O(x),O(y)) -> +#(x,y) p2: +#(x,+(y,z)) -> +#(x,y) p3: +#(x,+(y,z)) -> +#(+(x,y),z) p4: +#(I(x),I(y)) -> +#(x,y) p5: +#(I(x),I(y)) -> +#(+(x,y),I(|0|())) p6: +#(O(x),I(y)) -> +#(x,y) p7: +#(I(x),O(y)) -> +#(x,y) and R consists of: r1: O(|0|()) -> |0|() r2: +(|0|(),x) -> x r3: +(x,|0|()) -> x r4: +(O(x),O(y)) -> O(+(x,y)) r5: +(O(x),I(y)) -> I(+(x,y)) r6: +(I(x),O(y)) -> I(+(x,y)) r7: +(I(x),I(y)) -> O(+(+(x,y),I(|0|()))) r8: +(x,+(y,z)) -> +(+(x,y),z) r9: -(x,|0|()) -> x r10: -(|0|(),x) -> |0|() r11: -(O(x),O(y)) -> O(-(x,y)) r12: -(O(x),I(y)) -> I(-(-(x,y),I(|1|()))) r13: -(I(x),O(y)) -> I(-(x,y)) r14: -(I(x),I(y)) -> O(-(x,y)) r15: not(true()) -> false() r16: not(false()) -> true() r17: and(x,true()) -> x r18: and(x,false()) -> false() r19: if(true(),x,y) -> x r20: if(false(),x,y) -> y r21: ge(O(x),O(y)) -> ge(x,y) r22: ge(O(x),I(y)) -> not(ge(y,x)) r23: ge(I(x),O(y)) -> ge(x,y) r24: ge(I(x),I(y)) -> ge(x,y) r25: ge(x,|0|()) -> true() r26: ge(|0|(),O(x)) -> ge(|0|(),x) r27: ge(|0|(),I(x)) -> false() r28: |Log'|(|0|()) -> |0|() r29: |Log'|(I(x)) -> +(|Log'|(x),I(|0|())) r30: |Log'|(O(x)) -> if(ge(x,I(|0|())),+(|Log'|(x),I(|0|())),|0|()) r31: Log(x) -> -(|Log'|(x),I(|0|())) r32: Val(L(x)) -> x r33: Val(N(x,l(),r())) -> x r34: Min(L(x)) -> x r35: Min(N(x,l(),r())) -> Min(l()) r36: Max(L(x)) -> x r37: Max(N(x,l(),r())) -> Max(r()) r38: BS(L(x)) -> true() r39: BS(N(x,l(),r())) -> and(and(ge(x,Max(l())),ge(Min(r()),x)),and(BS(l()),BS(r()))) r40: Size(L(x)) -> I(|0|()) r41: Size(N(x,l(),r())) -> +(+(Size(l()),Size(r())),I(|1|())) r42: WB(L(x)) -> true() r43: WB(N(x,l(),r())) -> and(if(ge(Size(l()),Size(r())),ge(I(|0|()),-(Size(l()),Size(r()))),ge(I(|0|()),-(Size(r()),Size(l())))),and(WB(l()),WB(r()))) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8 Take the reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: +#_A(x1,x2) = ((0,0,0,0),(0,0,0,0),(1,0,0,0),(1,0,0,0)) x1 + ((1,0,0,0),(1,1,0,0),(1,0,1,0),(0,0,1,1)) x2 O_A(x1) = ((1,0,0,0),(1,1,0,0),(0,1,1,0),(0,0,0,0)) x1 + (1,1,0,9) +_A(x1,x2) = ((1,0,0,0),(0,1,0,0),(0,0,1,0),(1,1,0,1)) x1 + ((1,0,0,0),(0,1,0,0),(1,0,1,0),(0,0,0,1)) x2 + (2,5,2,1) I_A(x1) = ((1,0,0,0),(0,0,0,0),(1,1,0,0),(0,0,0,0)) x1 + (4,1,1,1) |0|_A() = (0,1,1,1) The next rules are strictly ordered: p1, p2, p3, p4, p5, p6, p7 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: -#(O(x),O(y)) -> -#(x,y) p2: -#(I(x),I(y)) -> -#(x,y) p3: -#(I(x),O(y)) -> -#(x,y) p4: -#(O(x),I(y)) -> -#(x,y) p5: -#(O(x),I(y)) -> -#(-(x,y),I(|1|())) and R consists of: r1: O(|0|()) -> |0|() r2: +(|0|(),x) -> x r3: +(x,|0|()) -> x r4: +(O(x),O(y)) -> O(+(x,y)) r5: +(O(x),I(y)) -> I(+(x,y)) r6: +(I(x),O(y)) -> I(+(x,y)) r7: +(I(x),I(y)) -> O(+(+(x,y),I(|0|()))) r8: +(x,+(y,z)) -> +(+(x,y),z) r9: -(x,|0|()) -> x r10: -(|0|(),x) -> |0|() r11: -(O(x),O(y)) -> O(-(x,y)) r12: -(O(x),I(y)) -> I(-(-(x,y),I(|1|()))) r13: -(I(x),O(y)) -> I(-(x,y)) r14: -(I(x),I(y)) -> O(-(x,y)) r15: not(true()) -> false() r16: not(false()) -> true() r17: and(x,true()) -> x r18: and(x,false()) -> false() r19: if(true(),x,y) -> x r20: if(false(),x,y) -> y r21: ge(O(x),O(y)) -> ge(x,y) r22: ge(O(x),I(y)) -> not(ge(y,x)) r23: ge(I(x),O(y)) -> ge(x,y) r24: ge(I(x),I(y)) -> ge(x,y) r25: ge(x,|0|()) -> true() r26: ge(|0|(),O(x)) -> ge(|0|(),x) r27: ge(|0|(),I(x)) -> false() r28: |Log'|(|0|()) -> |0|() r29: |Log'|(I(x)) -> +(|Log'|(x),I(|0|())) r30: |Log'|(O(x)) -> if(ge(x,I(|0|())),+(|Log'|(x),I(|0|())),|0|()) r31: Log(x) -> -(|Log'|(x),I(|0|())) r32: Val(L(x)) -> x r33: Val(N(x,l(),r())) -> x r34: Min(L(x)) -> x r35: Min(N(x,l(),r())) -> Min(l()) r36: Max(L(x)) -> x r37: Max(N(x,l(),r())) -> Max(r()) r38: BS(L(x)) -> true() r39: BS(N(x,l(),r())) -> and(and(ge(x,Max(l())),ge(Min(r()),x)),and(BS(l()),BS(r()))) r40: Size(L(x)) -> I(|0|()) r41: Size(N(x,l(),r())) -> +(+(Size(l()),Size(r())),I(|1|())) r42: WB(L(x)) -> true() r43: WB(N(x,l(),r())) -> and(if(ge(Size(l()),Size(r())),ge(I(|0|()),-(Size(l()),Size(r()))),ge(I(|0|()),-(Size(r()),Size(l())))),and(WB(l()),WB(r()))) The set of usable rules consists of r1, r9, r10, r11, r12, r13, r14 Take the reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: -#_A(x1,x2) = ((1,0,0,0),(0,0,0,0),(0,0,0,0),(1,0,0,0)) x1 + ((1,0,0,0),(1,1,0,0),(1,1,0,0),(0,0,0,0)) x2 O_A(x1) = ((1,0,0,0),(1,1,0,0),(1,0,1,0),(1,1,0,0)) x1 + (7,10,6,0) I_A(x1) = ((1,0,0,0),(0,0,0,0),(0,0,0,0),(1,1,0,0)) x1 + (4,1,1,0) -_A(x1,x2) = ((1,0,0,0),(1,1,0,0),(0,0,0,0),(0,1,1,0)) x1 + ((1,0,0,0),(1,1,0,0),(1,1,1,0),(0,1,0,0)) x2 + (1,27,2,1) |1|_A() = (1,1,1,1) |0|_A() = (4,1,1,4) The next rules are strictly ordered: p1, p2, p3, p4, p5 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: ge#(O(x),O(y)) -> ge#(x,y) p2: ge#(I(x),I(y)) -> ge#(x,y) p3: ge#(I(x),O(y)) -> ge#(x,y) p4: ge#(O(x),I(y)) -> ge#(y,x) and R consists of: r1: O(|0|()) -> |0|() r2: +(|0|(),x) -> x r3: +(x,|0|()) -> x r4: +(O(x),O(y)) -> O(+(x,y)) r5: +(O(x),I(y)) -> I(+(x,y)) r6: +(I(x),O(y)) -> I(+(x,y)) r7: +(I(x),I(y)) -> O(+(+(x,y),I(|0|()))) r8: +(x,+(y,z)) -> +(+(x,y),z) r9: -(x,|0|()) -> x r10: -(|0|(),x) -> |0|() r11: -(O(x),O(y)) -> O(-(x,y)) r12: -(O(x),I(y)) -> I(-(-(x,y),I(|1|()))) r13: -(I(x),O(y)) -> I(-(x,y)) r14: -(I(x),I(y)) -> O(-(x,y)) r15: not(true()) -> false() r16: not(false()) -> true() r17: and(x,true()) -> x r18: and(x,false()) -> false() r19: if(true(),x,y) -> x r20: if(false(),x,y) -> y r21: ge(O(x),O(y)) -> ge(x,y) r22: ge(O(x),I(y)) -> not(ge(y,x)) r23: ge(I(x),O(y)) -> ge(x,y) r24: ge(I(x),I(y)) -> ge(x,y) r25: ge(x,|0|()) -> true() r26: ge(|0|(),O(x)) -> ge(|0|(),x) r27: ge(|0|(),I(x)) -> false() r28: |Log'|(|0|()) -> |0|() r29: |Log'|(I(x)) -> +(|Log'|(x),I(|0|())) r30: |Log'|(O(x)) -> if(ge(x,I(|0|())),+(|Log'|(x),I(|0|())),|0|()) r31: Log(x) -> -(|Log'|(x),I(|0|())) r32: Val(L(x)) -> x r33: Val(N(x,l(),r())) -> x r34: Min(L(x)) -> x r35: Min(N(x,l(),r())) -> Min(l()) r36: Max(L(x)) -> x r37: Max(N(x,l(),r())) -> Max(r()) r38: BS(L(x)) -> true() r39: BS(N(x,l(),r())) -> and(and(ge(x,Max(l())),ge(Min(r()),x)),and(BS(l()),BS(r()))) r40: Size(L(x)) -> I(|0|()) r41: Size(N(x,l(),r())) -> +(+(Size(l()),Size(r())),I(|1|())) r42: WB(L(x)) -> true() r43: WB(N(x,l(),r())) -> and(if(ge(Size(l()),Size(r())),ge(I(|0|()),-(Size(l()),Size(r()))),ge(I(|0|()),-(Size(r()),Size(l())))),and(WB(l()),WB(r()))) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: ge#_A(x1,x2) = ((1,0,0,0),(0,1,0,0),(0,0,0,0),(1,1,1,0)) x1 + ((1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,1,1)) x2 O_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,0,1,1)) x1 + (1,1,1,1) I_A(x1) = ((1,0,0,0),(1,1,0,0),(0,0,1,0),(1,1,0,1)) x1 + (1,1,1,1) The next rules are strictly ordered: p1, p2, p3, p4 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: ge#(|0|(),O(x)) -> ge#(|0|(),x) and R consists of: r1: O(|0|()) -> |0|() r2: +(|0|(),x) -> x r3: +(x,|0|()) -> x r4: +(O(x),O(y)) -> O(+(x,y)) r5: +(O(x),I(y)) -> I(+(x,y)) r6: +(I(x),O(y)) -> I(+(x,y)) r7: +(I(x),I(y)) -> O(+(+(x,y),I(|0|()))) r8: +(x,+(y,z)) -> +(+(x,y),z) r9: -(x,|0|()) -> x r10: -(|0|(),x) -> |0|() r11: -(O(x),O(y)) -> O(-(x,y)) r12: -(O(x),I(y)) -> I(-(-(x,y),I(|1|()))) r13: -(I(x),O(y)) -> I(-(x,y)) r14: -(I(x),I(y)) -> O(-(x,y)) r15: not(true()) -> false() r16: not(false()) -> true() r17: and(x,true()) -> x r18: and(x,false()) -> false() r19: if(true(),x,y) -> x r20: if(false(),x,y) -> y r21: ge(O(x),O(y)) -> ge(x,y) r22: ge(O(x),I(y)) -> not(ge(y,x)) r23: ge(I(x),O(y)) -> ge(x,y) r24: ge(I(x),I(y)) -> ge(x,y) r25: ge(x,|0|()) -> true() r26: ge(|0|(),O(x)) -> ge(|0|(),x) r27: ge(|0|(),I(x)) -> false() r28: |Log'|(|0|()) -> |0|() r29: |Log'|(I(x)) -> +(|Log'|(x),I(|0|())) r30: |Log'|(O(x)) -> if(ge(x,I(|0|())),+(|Log'|(x),I(|0|())),|0|()) r31: Log(x) -> -(|Log'|(x),I(|0|())) r32: Val(L(x)) -> x r33: Val(N(x,l(),r())) -> x r34: Min(L(x)) -> x r35: Min(N(x,l(),r())) -> Min(l()) r36: Max(L(x)) -> x r37: Max(N(x,l(),r())) -> Max(r()) r38: BS(L(x)) -> true() r39: BS(N(x,l(),r())) -> and(and(ge(x,Max(l())),ge(Min(r()),x)),and(BS(l()),BS(r()))) r40: Size(L(x)) -> I(|0|()) r41: Size(N(x,l(),r())) -> +(+(Size(l()),Size(r())),I(|1|())) r42: WB(L(x)) -> true() r43: WB(N(x,l(),r())) -> and(if(ge(Size(l()),Size(r())),ge(I(|0|()),-(Size(l()),Size(r()))),ge(I(|0|()),-(Size(r()),Size(l())))),and(WB(l()),WB(r()))) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: ge#_A(x1,x2) = ((0,0,0,0),(0,0,0,0),(1,0,0,0),(0,1,0,0)) x1 + ((1,0,0,0),(0,1,0,0),(0,0,1,0),(1,1,1,1)) x2 |0|_A() = (0,0,0,0) O_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.