YES We show the termination of the TRS R: active(U11(tt(),N)) -> mark(N) active(U21(tt(),M,N)) -> mark(s(plus(N,M))) active(and(tt(),X)) -> mark(X) active(isNat(|0|())) -> mark(tt()) active(isNat(plus(V1,V2))) -> mark(and(isNat(V1),isNat(V2))) active(isNat(s(V1))) -> mark(isNat(V1)) active(plus(N,|0|())) -> mark(U11(isNat(N),N)) active(plus(N,s(M))) -> mark(U21(and(isNat(M),isNat(N)),M,N)) mark(U11(X1,X2)) -> active(U11(mark(X1),X2)) mark(tt()) -> active(tt()) mark(U21(X1,X2,X3)) -> active(U21(mark(X1),X2,X3)) mark(s(X)) -> active(s(mark(X))) mark(plus(X1,X2)) -> active(plus(mark(X1),mark(X2))) mark(and(X1,X2)) -> active(and(mark(X1),X2)) mark(isNat(X)) -> active(isNat(X)) mark(|0|()) -> active(|0|()) U11(mark(X1),X2) -> U11(X1,X2) U11(X1,mark(X2)) -> U11(X1,X2) U11(active(X1),X2) -> U11(X1,X2) U11(X1,active(X2)) -> U11(X1,X2) U21(mark(X1),X2,X3) -> U21(X1,X2,X3) U21(X1,mark(X2),X3) -> U21(X1,X2,X3) U21(X1,X2,mark(X3)) -> U21(X1,X2,X3) U21(active(X1),X2,X3) -> U21(X1,X2,X3) U21(X1,active(X2),X3) -> U21(X1,X2,X3) U21(X1,X2,active(X3)) -> U21(X1,X2,X3) s(mark(X)) -> s(X) s(active(X)) -> s(X) plus(mark(X1),X2) -> plus(X1,X2) plus(X1,mark(X2)) -> plus(X1,X2) plus(active(X1),X2) -> plus(X1,X2) plus(X1,active(X2)) -> plus(X1,X2) and(mark(X1),X2) -> and(X1,X2) and(X1,mark(X2)) -> and(X1,X2) and(active(X1),X2) -> and(X1,X2) and(X1,active(X2)) -> and(X1,X2) isNat(mark(X)) -> isNat(X) isNat(active(X)) -> isNat(X) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(U11(tt(),N)) -> mark#(N) p2: active#(U21(tt(),M,N)) -> mark#(s(plus(N,M))) p3: active#(U21(tt(),M,N)) -> s#(plus(N,M)) p4: active#(U21(tt(),M,N)) -> plus#(N,M) p5: active#(and(tt(),X)) -> mark#(X) p6: active#(isNat(|0|())) -> mark#(tt()) p7: active#(isNat(plus(V1,V2))) -> mark#(and(isNat(V1),isNat(V2))) p8: active#(isNat(plus(V1,V2))) -> and#(isNat(V1),isNat(V2)) p9: active#(isNat(plus(V1,V2))) -> isNat#(V1) p10: active#(isNat(plus(V1,V2))) -> isNat#(V2) p11: active#(isNat(s(V1))) -> mark#(isNat(V1)) p12: active#(isNat(s(V1))) -> isNat#(V1) p13: active#(plus(N,|0|())) -> mark#(U11(isNat(N),N)) p14: active#(plus(N,|0|())) -> U11#(isNat(N),N) p15: active#(plus(N,|0|())) -> isNat#(N) p16: active#(plus(N,s(M))) -> mark#(U21(and(isNat(M),isNat(N)),M,N)) p17: active#(plus(N,s(M))) -> U21#(and(isNat(M),isNat(N)),M,N) p18: active#(plus(N,s(M))) -> and#(isNat(M),isNat(N)) p19: active#(plus(N,s(M))) -> isNat#(M) p20: active#(plus(N,s(M))) -> isNat#(N) p21: mark#(U11(X1,X2)) -> active#(U11(mark(X1),X2)) p22: mark#(U11(X1,X2)) -> U11#(mark(X1),X2) p23: mark#(U11(X1,X2)) -> mark#(X1) p24: mark#(tt()) -> active#(tt()) p25: mark#(U21(X1,X2,X3)) -> active#(U21(mark(X1),X2,X3)) p26: mark#(U21(X1,X2,X3)) -> U21#(mark(X1),X2,X3) p27: mark#(U21(X1,X2,X3)) -> mark#(X1) p28: mark#(s(X)) -> active#(s(mark(X))) p29: mark#(s(X)) -> s#(mark(X)) p30: mark#(s(X)) -> mark#(X) p31: mark#(plus(X1,X2)) -> active#(plus(mark(X1),mark(X2))) p32: mark#(plus(X1,X2)) -> plus#(mark(X1),mark(X2)) p33: mark#(plus(X1,X2)) -> mark#(X1) p34: mark#(plus(X1,X2)) -> mark#(X2) p35: mark#(and(X1,X2)) -> active#(and(mark(X1),X2)) p36: mark#(and(X1,X2)) -> and#(mark(X1),X2) p37: mark#(and(X1,X2)) -> mark#(X1) p38: mark#(isNat(X)) -> active#(isNat(X)) p39: mark#(|0|()) -> active#(|0|()) p40: U11#(mark(X1),X2) -> U11#(X1,X2) p41: U11#(X1,mark(X2)) -> U11#(X1,X2) p42: U11#(active(X1),X2) -> U11#(X1,X2) p43: U11#(X1,active(X2)) -> U11#(X1,X2) p44: U21#(mark(X1),X2,X3) -> U21#(X1,X2,X3) p45: U21#(X1,mark(X2),X3) -> U21#(X1,X2,X3) p46: U21#(X1,X2,mark(X3)) -> U21#(X1,X2,X3) p47: U21#(active(X1),X2,X3) -> U21#(X1,X2,X3) p48: U21#(X1,active(X2),X3) -> U21#(X1,X2,X3) p49: U21#(X1,X2,active(X3)) -> U21#(X1,X2,X3) p50: s#(mark(X)) -> s#(X) p51: s#(active(X)) -> s#(X) p52: plus#(mark(X1),X2) -> plus#(X1,X2) p53: plus#(X1,mark(X2)) -> plus#(X1,X2) p54: plus#(active(X1),X2) -> plus#(X1,X2) p55: plus#(X1,active(X2)) -> plus#(X1,X2) p56: and#(mark(X1),X2) -> and#(X1,X2) p57: and#(X1,mark(X2)) -> and#(X1,X2) p58: and#(active(X1),X2) -> and#(X1,X2) p59: and#(X1,active(X2)) -> and#(X1,X2) p60: isNat#(mark(X)) -> isNat#(X) p61: isNat#(active(X)) -> isNat#(X) and R consists of: r1: active(U11(tt(),N)) -> mark(N) r2: active(U21(tt(),M,N)) -> mark(s(plus(N,M))) r3: active(and(tt(),X)) -> mark(X) r4: active(isNat(|0|())) -> mark(tt()) r5: active(isNat(plus(V1,V2))) -> mark(and(isNat(V1),isNat(V2))) r6: active(isNat(s(V1))) -> mark(isNat(V1)) r7: active(plus(N,|0|())) -> mark(U11(isNat(N),N)) r8: active(plus(N,s(M))) -> mark(U21(and(isNat(M),isNat(N)),M,N)) r9: mark(U11(X1,X2)) -> active(U11(mark(X1),X2)) r10: mark(tt()) -> active(tt()) r11: mark(U21(X1,X2,X3)) -> active(U21(mark(X1),X2,X3)) r12: mark(s(X)) -> active(s(mark(X))) r13: mark(plus(X1,X2)) -> active(plus(mark(X1),mark(X2))) r14: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r15: mark(isNat(X)) -> active(isNat(X)) r16: mark(|0|()) -> active(|0|()) r17: U11(mark(X1),X2) -> U11(X1,X2) r18: U11(X1,mark(X2)) -> U11(X1,X2) r19: U11(active(X1),X2) -> U11(X1,X2) r20: U11(X1,active(X2)) -> U11(X1,X2) r21: U21(mark(X1),X2,X3) -> U21(X1,X2,X3) r22: U21(X1,mark(X2),X3) -> U21(X1,X2,X3) r23: U21(X1,X2,mark(X3)) -> U21(X1,X2,X3) r24: U21(active(X1),X2,X3) -> U21(X1,X2,X3) r25: U21(X1,active(X2),X3) -> U21(X1,X2,X3) r26: U21(X1,X2,active(X3)) -> U21(X1,X2,X3) r27: s(mark(X)) -> s(X) r28: s(active(X)) -> s(X) r29: plus(mark(X1),X2) -> plus(X1,X2) r30: plus(X1,mark(X2)) -> plus(X1,X2) r31: plus(active(X1),X2) -> plus(X1,X2) r32: plus(X1,active(X2)) -> plus(X1,X2) r33: and(mark(X1),X2) -> and(X1,X2) r34: and(X1,mark(X2)) -> and(X1,X2) r35: and(active(X1),X2) -> and(X1,X2) r36: and(X1,active(X2)) -> and(X1,X2) r37: isNat(mark(X)) -> isNat(X) r38: isNat(active(X)) -> isNat(X) The estimated dependency graph contains the following SCCs: {p1, p2, p5, p7, p11, p13, p16, p21, p23, p25, p27, p28, p30, p31, p33, p34, p35, p37, p38} {p50, p51} {p52, p53, p54, p55} {p56, p57, p58, p59} {p60, p61} {p40, p41, p42, p43} {p44, p45, p46, p47, p48, p49} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(U11(tt(),N)) -> mark#(N) p2: mark#(isNat(X)) -> active#(isNat(X)) p3: active#(plus(N,s(M))) -> mark#(U21(and(isNat(M),isNat(N)),M,N)) p4: mark#(and(X1,X2)) -> mark#(X1) p5: mark#(and(X1,X2)) -> active#(and(mark(X1),X2)) p6: active#(plus(N,|0|())) -> mark#(U11(isNat(N),N)) p7: mark#(plus(X1,X2)) -> mark#(X2) p8: mark#(plus(X1,X2)) -> mark#(X1) p9: mark#(plus(X1,X2)) -> active#(plus(mark(X1),mark(X2))) p10: active#(isNat(s(V1))) -> mark#(isNat(V1)) p11: mark#(s(X)) -> mark#(X) p12: mark#(s(X)) -> active#(s(mark(X))) p13: active#(isNat(plus(V1,V2))) -> mark#(and(isNat(V1),isNat(V2))) p14: mark#(U21(X1,X2,X3)) -> mark#(X1) p15: mark#(U21(X1,X2,X3)) -> active#(U21(mark(X1),X2,X3)) p16: active#(and(tt(),X)) -> mark#(X) p17: mark#(U11(X1,X2)) -> mark#(X1) p18: mark#(U11(X1,X2)) -> active#(U11(mark(X1),X2)) p19: active#(U21(tt(),M,N)) -> mark#(s(plus(N,M))) and R consists of: r1: active(U11(tt(),N)) -> mark(N) r2: active(U21(tt(),M,N)) -> mark(s(plus(N,M))) r3: active(and(tt(),X)) -> mark(X) r4: active(isNat(|0|())) -> mark(tt()) r5: active(isNat(plus(V1,V2))) -> mark(and(isNat(V1),isNat(V2))) r6: active(isNat(s(V1))) -> mark(isNat(V1)) r7: active(plus(N,|0|())) -> mark(U11(isNat(N),N)) r8: active(plus(N,s(M))) -> mark(U21(and(isNat(M),isNat(N)),M,N)) r9: mark(U11(X1,X2)) -> active(U11(mark(X1),X2)) r10: mark(tt()) -> active(tt()) r11: mark(U21(X1,X2,X3)) -> active(U21(mark(X1),X2,X3)) r12: mark(s(X)) -> active(s(mark(X))) r13: mark(plus(X1,X2)) -> active(plus(mark(X1),mark(X2))) r14: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r15: mark(isNat(X)) -> active(isNat(X)) r16: mark(|0|()) -> active(|0|()) r17: U11(mark(X1),X2) -> U11(X1,X2) r18: U11(X1,mark(X2)) -> U11(X1,X2) r19: U11(active(X1),X2) -> U11(X1,X2) r20: U11(X1,active(X2)) -> U11(X1,X2) r21: U21(mark(X1),X2,X3) -> U21(X1,X2,X3) r22: U21(X1,mark(X2),X3) -> U21(X1,X2,X3) r23: U21(X1,X2,mark(X3)) -> U21(X1,X2,X3) r24: U21(active(X1),X2,X3) -> U21(X1,X2,X3) r25: U21(X1,active(X2),X3) -> U21(X1,X2,X3) r26: U21(X1,X2,active(X3)) -> U21(X1,X2,X3) r27: s(mark(X)) -> s(X) r28: s(active(X)) -> s(X) r29: plus(mark(X1),X2) -> plus(X1,X2) r30: plus(X1,mark(X2)) -> plus(X1,X2) r31: plus(active(X1),X2) -> plus(X1,X2) r32: plus(X1,active(X2)) -> plus(X1,X2) r33: and(mark(X1),X2) -> and(X1,X2) r34: and(X1,mark(X2)) -> and(X1,X2) r35: and(active(X1),X2) -> and(X1,X2) r36: and(X1,active(X2)) -> and(X1,X2) r37: isNat(mark(X)) -> isNat(X) r38: isNat(active(X)) -> isNat(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38 Take the reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: active#_A(x1) = ((0,0,0,0),(1,0,0,0),(0,1,0,0),(0,1,0,0)) x1 + (0,0,0,3) U11_A(x1,x2) = x1 + ((1,0,0,0),(0,1,0,0),(1,1,0,0),(0,1,0,0)) x2 + (1,0,1,0) tt_A() = (0,6,1,0) mark#_A(x1) = ((0,0,0,0),(1,0,0,0),(0,1,0,0),(1,0,1,0)) x1 + (0,0,2,0) isNat_A(x1) = ((0,0,0,0),(1,0,0,0),(1,0,0,0),(0,0,0,0)) x1 + (0,6,10,1) plus_A(x1,x2) = ((1,0,0,0),(0,0,0,0),(0,0,0,0),(0,1,0,0)) x1 + x2 + (15,36,55,1) s_A(x1) = x1 + (3,1,2,0) U21_A(x1,x2,x3) = x1 + ((1,0,0,0),(0,0,0,0),(0,0,0,0),(0,1,0,0)) x2 + ((1,0,0,0),(0,0,0,0),(0,1,0,0),(0,1,0,0)) x3 + (18,18,20,0) and_A(x1,x2) = ((1,0,0,0),(1,1,0,0),(1,0,1,0),(1,0,0,0)) x1 + x2 + (0,4,1,0) mark_A(x1) = ((1,0,0,0),(0,1,0,0),(1,1,1,0),(0,0,0,0)) x1 + (0,1,1,19) |0|_A() = (1,2,0,0) active_A(x1) = ((1,0,0,0),(0,1,0,0),(0,0,1,0),(1,0,0,0)) x1 + (0,0,3,0) The next rules are strictly ordered: p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: s#(mark(X)) -> s#(X) p2: s#(active(X)) -> s#(X) and R consists of: r1: active(U11(tt(),N)) -> mark(N) r2: active(U21(tt(),M,N)) -> mark(s(plus(N,M))) r3: active(and(tt(),X)) -> mark(X) r4: active(isNat(|0|())) -> mark(tt()) r5: active(isNat(plus(V1,V2))) -> mark(and(isNat(V1),isNat(V2))) r6: active(isNat(s(V1))) -> mark(isNat(V1)) r7: active(plus(N,|0|())) -> mark(U11(isNat(N),N)) r8: active(plus(N,s(M))) -> mark(U21(and(isNat(M),isNat(N)),M,N)) r9: mark(U11(X1,X2)) -> active(U11(mark(X1),X2)) r10: mark(tt()) -> active(tt()) r11: mark(U21(X1,X2,X3)) -> active(U21(mark(X1),X2,X3)) r12: mark(s(X)) -> active(s(mark(X))) r13: mark(plus(X1,X2)) -> active(plus(mark(X1),mark(X2))) r14: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r15: mark(isNat(X)) -> active(isNat(X)) r16: mark(|0|()) -> active(|0|()) r17: U11(mark(X1),X2) -> U11(X1,X2) r18: U11(X1,mark(X2)) -> U11(X1,X2) r19: U11(active(X1),X2) -> U11(X1,X2) r20: U11(X1,active(X2)) -> U11(X1,X2) r21: U21(mark(X1),X2,X3) -> U21(X1,X2,X3) r22: U21(X1,mark(X2),X3) -> U21(X1,X2,X3) r23: U21(X1,X2,mark(X3)) -> U21(X1,X2,X3) r24: U21(active(X1),X2,X3) -> U21(X1,X2,X3) r25: U21(X1,active(X2),X3) -> U21(X1,X2,X3) r26: U21(X1,X2,active(X3)) -> U21(X1,X2,X3) r27: s(mark(X)) -> s(X) r28: s(active(X)) -> s(X) r29: plus(mark(X1),X2) -> plus(X1,X2) r30: plus(X1,mark(X2)) -> plus(X1,X2) r31: plus(active(X1),X2) -> plus(X1,X2) r32: plus(X1,active(X2)) -> plus(X1,X2) r33: and(mark(X1),X2) -> and(X1,X2) r34: and(X1,mark(X2)) -> and(X1,X2) r35: and(active(X1),X2) -> and(X1,X2) r36: and(X1,active(X2)) -> and(X1,X2) r37: isNat(mark(X)) -> isNat(X) r38: isNat(active(X)) -> isNat(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: s#_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 mark_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) active_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: plus#(mark(X1),X2) -> plus#(X1,X2) p2: plus#(X1,active(X2)) -> plus#(X1,X2) p3: plus#(active(X1),X2) -> plus#(X1,X2) p4: plus#(X1,mark(X2)) -> plus#(X1,X2) and R consists of: r1: active(U11(tt(),N)) -> mark(N) r2: active(U21(tt(),M,N)) -> mark(s(plus(N,M))) r3: active(and(tt(),X)) -> mark(X) r4: active(isNat(|0|())) -> mark(tt()) r5: active(isNat(plus(V1,V2))) -> mark(and(isNat(V1),isNat(V2))) r6: active(isNat(s(V1))) -> mark(isNat(V1)) r7: active(plus(N,|0|())) -> mark(U11(isNat(N),N)) r8: active(plus(N,s(M))) -> mark(U21(and(isNat(M),isNat(N)),M,N)) r9: mark(U11(X1,X2)) -> active(U11(mark(X1),X2)) r10: mark(tt()) -> active(tt()) r11: mark(U21(X1,X2,X3)) -> active(U21(mark(X1),X2,X3)) r12: mark(s(X)) -> active(s(mark(X))) r13: mark(plus(X1,X2)) -> active(plus(mark(X1),mark(X2))) r14: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r15: mark(isNat(X)) -> active(isNat(X)) r16: mark(|0|()) -> active(|0|()) r17: U11(mark(X1),X2) -> U11(X1,X2) r18: U11(X1,mark(X2)) -> U11(X1,X2) r19: U11(active(X1),X2) -> U11(X1,X2) r20: U11(X1,active(X2)) -> U11(X1,X2) r21: U21(mark(X1),X2,X3) -> U21(X1,X2,X3) r22: U21(X1,mark(X2),X3) -> U21(X1,X2,X3) r23: U21(X1,X2,mark(X3)) -> U21(X1,X2,X3) r24: U21(active(X1),X2,X3) -> U21(X1,X2,X3) r25: U21(X1,active(X2),X3) -> U21(X1,X2,X3) r26: U21(X1,X2,active(X3)) -> U21(X1,X2,X3) r27: s(mark(X)) -> s(X) r28: s(active(X)) -> s(X) r29: plus(mark(X1),X2) -> plus(X1,X2) r30: plus(X1,mark(X2)) -> plus(X1,X2) r31: plus(active(X1),X2) -> plus(X1,X2) r32: plus(X1,active(X2)) -> plus(X1,X2) r33: and(mark(X1),X2) -> and(X1,X2) r34: and(X1,mark(X2)) -> and(X1,X2) r35: and(active(X1),X2) -> and(X1,X2) r36: and(X1,active(X2)) -> and(X1,X2) r37: isNat(mark(X)) -> isNat(X) r38: isNat(active(X)) -> isNat(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: plus#_A(x1,x2) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x2 mark_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(0,1,1,1)) x1 + (1,1,1,1) active_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) The next rules are strictly ordered: p1, p2, p3, p4 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: and#(mark(X1),X2) -> and#(X1,X2) p2: and#(X1,active(X2)) -> and#(X1,X2) p3: and#(active(X1),X2) -> and#(X1,X2) p4: and#(X1,mark(X2)) -> and#(X1,X2) and R consists of: r1: active(U11(tt(),N)) -> mark(N) r2: active(U21(tt(),M,N)) -> mark(s(plus(N,M))) r3: active(and(tt(),X)) -> mark(X) r4: active(isNat(|0|())) -> mark(tt()) r5: active(isNat(plus(V1,V2))) -> mark(and(isNat(V1),isNat(V2))) r6: active(isNat(s(V1))) -> mark(isNat(V1)) r7: active(plus(N,|0|())) -> mark(U11(isNat(N),N)) r8: active(plus(N,s(M))) -> mark(U21(and(isNat(M),isNat(N)),M,N)) r9: mark(U11(X1,X2)) -> active(U11(mark(X1),X2)) r10: mark(tt()) -> active(tt()) r11: mark(U21(X1,X2,X3)) -> active(U21(mark(X1),X2,X3)) r12: mark(s(X)) -> active(s(mark(X))) r13: mark(plus(X1,X2)) -> active(plus(mark(X1),mark(X2))) r14: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r15: mark(isNat(X)) -> active(isNat(X)) r16: mark(|0|()) -> active(|0|()) r17: U11(mark(X1),X2) -> U11(X1,X2) r18: U11(X1,mark(X2)) -> U11(X1,X2) r19: U11(active(X1),X2) -> U11(X1,X2) r20: U11(X1,active(X2)) -> U11(X1,X2) r21: U21(mark(X1),X2,X3) -> U21(X1,X2,X3) r22: U21(X1,mark(X2),X3) -> U21(X1,X2,X3) r23: U21(X1,X2,mark(X3)) -> U21(X1,X2,X3) r24: U21(active(X1),X2,X3) -> U21(X1,X2,X3) r25: U21(X1,active(X2),X3) -> U21(X1,X2,X3) r26: U21(X1,X2,active(X3)) -> U21(X1,X2,X3) r27: s(mark(X)) -> s(X) r28: s(active(X)) -> s(X) r29: plus(mark(X1),X2) -> plus(X1,X2) r30: plus(X1,mark(X2)) -> plus(X1,X2) r31: plus(active(X1),X2) -> plus(X1,X2) r32: plus(X1,active(X2)) -> plus(X1,X2) r33: and(mark(X1),X2) -> and(X1,X2) r34: and(X1,mark(X2)) -> and(X1,X2) r35: and(active(X1),X2) -> and(X1,X2) r36: and(X1,active(X2)) -> and(X1,X2) r37: isNat(mark(X)) -> isNat(X) r38: isNat(active(X)) -> isNat(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: and#_A(x1,x2) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x2 mark_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(0,1,1,1)) x1 + (1,1,1,1) active_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) The next rules are strictly ordered: p1, p2, p3, p4 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(mark(X)) -> isNat#(X) p2: isNat#(active(X)) -> isNat#(X) and R consists of: r1: active(U11(tt(),N)) -> mark(N) r2: active(U21(tt(),M,N)) -> mark(s(plus(N,M))) r3: active(and(tt(),X)) -> mark(X) r4: active(isNat(|0|())) -> mark(tt()) r5: active(isNat(plus(V1,V2))) -> mark(and(isNat(V1),isNat(V2))) r6: active(isNat(s(V1))) -> mark(isNat(V1)) r7: active(plus(N,|0|())) -> mark(U11(isNat(N),N)) r8: active(plus(N,s(M))) -> mark(U21(and(isNat(M),isNat(N)),M,N)) r9: mark(U11(X1,X2)) -> active(U11(mark(X1),X2)) r10: mark(tt()) -> active(tt()) r11: mark(U21(X1,X2,X3)) -> active(U21(mark(X1),X2,X3)) r12: mark(s(X)) -> active(s(mark(X))) r13: mark(plus(X1,X2)) -> active(plus(mark(X1),mark(X2))) r14: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r15: mark(isNat(X)) -> active(isNat(X)) r16: mark(|0|()) -> active(|0|()) r17: U11(mark(X1),X2) -> U11(X1,X2) r18: U11(X1,mark(X2)) -> U11(X1,X2) r19: U11(active(X1),X2) -> U11(X1,X2) r20: U11(X1,active(X2)) -> U11(X1,X2) r21: U21(mark(X1),X2,X3) -> U21(X1,X2,X3) r22: U21(X1,mark(X2),X3) -> U21(X1,X2,X3) r23: U21(X1,X2,mark(X3)) -> U21(X1,X2,X3) r24: U21(active(X1),X2,X3) -> U21(X1,X2,X3) r25: U21(X1,active(X2),X3) -> U21(X1,X2,X3) r26: U21(X1,X2,active(X3)) -> U21(X1,X2,X3) r27: s(mark(X)) -> s(X) r28: s(active(X)) -> s(X) r29: plus(mark(X1),X2) -> plus(X1,X2) r30: plus(X1,mark(X2)) -> plus(X1,X2) r31: plus(active(X1),X2) -> plus(X1,X2) r32: plus(X1,active(X2)) -> plus(X1,X2) r33: and(mark(X1),X2) -> and(X1,X2) r34: and(X1,mark(X2)) -> and(X1,X2) r35: and(active(X1),X2) -> and(X1,X2) r36: and(X1,active(X2)) -> and(X1,X2) r37: isNat(mark(X)) -> isNat(X) r38: isNat(active(X)) -> isNat(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: isNat#_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 mark_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) active_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U11#(mark(X1),X2) -> U11#(X1,X2) p2: U11#(X1,active(X2)) -> U11#(X1,X2) p3: U11#(active(X1),X2) -> U11#(X1,X2) p4: U11#(X1,mark(X2)) -> U11#(X1,X2) and R consists of: r1: active(U11(tt(),N)) -> mark(N) r2: active(U21(tt(),M,N)) -> mark(s(plus(N,M))) r3: active(and(tt(),X)) -> mark(X) r4: active(isNat(|0|())) -> mark(tt()) r5: active(isNat(plus(V1,V2))) -> mark(and(isNat(V1),isNat(V2))) r6: active(isNat(s(V1))) -> mark(isNat(V1)) r7: active(plus(N,|0|())) -> mark(U11(isNat(N),N)) r8: active(plus(N,s(M))) -> mark(U21(and(isNat(M),isNat(N)),M,N)) r9: mark(U11(X1,X2)) -> active(U11(mark(X1),X2)) r10: mark(tt()) -> active(tt()) r11: mark(U21(X1,X2,X3)) -> active(U21(mark(X1),X2,X3)) r12: mark(s(X)) -> active(s(mark(X))) r13: mark(plus(X1,X2)) -> active(plus(mark(X1),mark(X2))) r14: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r15: mark(isNat(X)) -> active(isNat(X)) r16: mark(|0|()) -> active(|0|()) r17: U11(mark(X1),X2) -> U11(X1,X2) r18: U11(X1,mark(X2)) -> U11(X1,X2) r19: U11(active(X1),X2) -> U11(X1,X2) r20: U11(X1,active(X2)) -> U11(X1,X2) r21: U21(mark(X1),X2,X3) -> U21(X1,X2,X3) r22: U21(X1,mark(X2),X3) -> U21(X1,X2,X3) r23: U21(X1,X2,mark(X3)) -> U21(X1,X2,X3) r24: U21(active(X1),X2,X3) -> U21(X1,X2,X3) r25: U21(X1,active(X2),X3) -> U21(X1,X2,X3) r26: U21(X1,X2,active(X3)) -> U21(X1,X2,X3) r27: s(mark(X)) -> s(X) r28: s(active(X)) -> s(X) r29: plus(mark(X1),X2) -> plus(X1,X2) r30: plus(X1,mark(X2)) -> plus(X1,X2) r31: plus(active(X1),X2) -> plus(X1,X2) r32: plus(X1,active(X2)) -> plus(X1,X2) r33: and(mark(X1),X2) -> and(X1,X2) r34: and(X1,mark(X2)) -> and(X1,X2) r35: and(active(X1),X2) -> and(X1,X2) r36: and(X1,active(X2)) -> and(X1,X2) r37: isNat(mark(X)) -> isNat(X) r38: isNat(active(X)) -> isNat(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: U11#_A(x1,x2) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x2 mark_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(0,1,1,1)) x1 + (1,1,1,1) active_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) The next rules are strictly ordered: p1, p2, p3, p4 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U21#(mark(X1),X2,X3) -> U21#(X1,X2,X3) p2: U21#(X1,X2,active(X3)) -> U21#(X1,X2,X3) p3: U21#(X1,active(X2),X3) -> U21#(X1,X2,X3) p4: U21#(active(X1),X2,X3) -> U21#(X1,X2,X3) p5: U21#(X1,X2,mark(X3)) -> U21#(X1,X2,X3) p6: U21#(X1,mark(X2),X3) -> U21#(X1,X2,X3) and R consists of: r1: active(U11(tt(),N)) -> mark(N) r2: active(U21(tt(),M,N)) -> mark(s(plus(N,M))) r3: active(and(tt(),X)) -> mark(X) r4: active(isNat(|0|())) -> mark(tt()) r5: active(isNat(plus(V1,V2))) -> mark(and(isNat(V1),isNat(V2))) r6: active(isNat(s(V1))) -> mark(isNat(V1)) r7: active(plus(N,|0|())) -> mark(U11(isNat(N),N)) r8: active(plus(N,s(M))) -> mark(U21(and(isNat(M),isNat(N)),M,N)) r9: mark(U11(X1,X2)) -> active(U11(mark(X1),X2)) r10: mark(tt()) -> active(tt()) r11: mark(U21(X1,X2,X3)) -> active(U21(mark(X1),X2,X3)) r12: mark(s(X)) -> active(s(mark(X))) r13: mark(plus(X1,X2)) -> active(plus(mark(X1),mark(X2))) r14: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r15: mark(isNat(X)) -> active(isNat(X)) r16: mark(|0|()) -> active(|0|()) r17: U11(mark(X1),X2) -> U11(X1,X2) r18: U11(X1,mark(X2)) -> U11(X1,X2) r19: U11(active(X1),X2) -> U11(X1,X2) r20: U11(X1,active(X2)) -> U11(X1,X2) r21: U21(mark(X1),X2,X3) -> U21(X1,X2,X3) r22: U21(X1,mark(X2),X3) -> U21(X1,X2,X3) r23: U21(X1,X2,mark(X3)) -> U21(X1,X2,X3) r24: U21(active(X1),X2,X3) -> U21(X1,X2,X3) r25: U21(X1,active(X2),X3) -> U21(X1,X2,X3) r26: U21(X1,X2,active(X3)) -> U21(X1,X2,X3) r27: s(mark(X)) -> s(X) r28: s(active(X)) -> s(X) r29: plus(mark(X1),X2) -> plus(X1,X2) r30: plus(X1,mark(X2)) -> plus(X1,X2) r31: plus(active(X1),X2) -> plus(X1,X2) r32: plus(X1,active(X2)) -> plus(X1,X2) r33: and(mark(X1),X2) -> and(X1,X2) r34: and(X1,mark(X2)) -> and(X1,X2) r35: and(active(X1),X2) -> and(X1,X2) r36: and(X1,active(X2)) -> and(X1,X2) r37: isNat(mark(X)) -> isNat(X) r38: isNat(active(X)) -> isNat(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: U21#_A(x1,x2,x3) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,0,1,1)) x2 + ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x3 mark_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) active_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) The next rules are strictly ordered: p1, p2, p3, p4, p5, p6 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38 We remove them from the problem. Then no dependency pair remains.