YES We show the termination of the TRS R: active(U11(tt(),N)) -> mark(N) active(U21(tt(),M,N)) -> mark(s(plus(N,M))) active(and(tt(),X)) -> mark(X) active(isNat(|0|())) -> mark(tt()) active(isNat(plus(V1,V2))) -> mark(and(isNat(V1),isNat(V2))) active(isNat(s(V1))) -> mark(isNat(V1)) active(plus(N,|0|())) -> mark(U11(isNat(N),N)) active(plus(N,s(M))) -> mark(U21(and(isNat(M),isNat(N)),M,N)) active(U11(X1,X2)) -> U11(active(X1),X2) active(U21(X1,X2,X3)) -> U21(active(X1),X2,X3) active(s(X)) -> s(active(X)) active(plus(X1,X2)) -> plus(active(X1),X2) active(plus(X1,X2)) -> plus(X1,active(X2)) active(and(X1,X2)) -> and(active(X1),X2) U11(mark(X1),X2) -> mark(U11(X1,X2)) U21(mark(X1),X2,X3) -> mark(U21(X1,X2,X3)) s(mark(X)) -> mark(s(X)) plus(mark(X1),X2) -> mark(plus(X1,X2)) plus(X1,mark(X2)) -> mark(plus(X1,X2)) and(mark(X1),X2) -> mark(and(X1,X2)) proper(U11(X1,X2)) -> U11(proper(X1),proper(X2)) proper(tt()) -> ok(tt()) proper(U21(X1,X2,X3)) -> U21(proper(X1),proper(X2),proper(X3)) proper(s(X)) -> s(proper(X)) proper(plus(X1,X2)) -> plus(proper(X1),proper(X2)) proper(and(X1,X2)) -> and(proper(X1),proper(X2)) proper(isNat(X)) -> isNat(proper(X)) proper(|0|()) -> ok(|0|()) U11(ok(X1),ok(X2)) -> ok(U11(X1,X2)) U21(ok(X1),ok(X2),ok(X3)) -> ok(U21(X1,X2,X3)) s(ok(X)) -> ok(s(X)) plus(ok(X1),ok(X2)) -> ok(plus(X1,X2)) and(ok(X1),ok(X2)) -> ok(and(X1,X2)) isNat(ok(X)) -> ok(isNat(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(U21(tt(),M,N)) -> s#(plus(N,M)) p2: active#(U21(tt(),M,N)) -> plus#(N,M) p3: active#(isNat(plus(V1,V2))) -> and#(isNat(V1),isNat(V2)) p4: active#(isNat(plus(V1,V2))) -> isNat#(V1) p5: active#(isNat(plus(V1,V2))) -> isNat#(V2) p6: active#(isNat(s(V1))) -> isNat#(V1) p7: active#(plus(N,|0|())) -> U11#(isNat(N),N) p8: active#(plus(N,|0|())) -> isNat#(N) p9: active#(plus(N,s(M))) -> U21#(and(isNat(M),isNat(N)),M,N) p10: active#(plus(N,s(M))) -> and#(isNat(M),isNat(N)) p11: active#(plus(N,s(M))) -> isNat#(M) p12: active#(plus(N,s(M))) -> isNat#(N) p13: active#(U11(X1,X2)) -> U11#(active(X1),X2) p14: active#(U11(X1,X2)) -> active#(X1) p15: active#(U21(X1,X2,X3)) -> U21#(active(X1),X2,X3) p16: active#(U21(X1,X2,X3)) -> active#(X1) p17: active#(s(X)) -> s#(active(X)) p18: active#(s(X)) -> active#(X) p19: active#(plus(X1,X2)) -> plus#(active(X1),X2) p20: active#(plus(X1,X2)) -> active#(X1) p21: active#(plus(X1,X2)) -> plus#(X1,active(X2)) p22: active#(plus(X1,X2)) -> active#(X2) p23: active#(and(X1,X2)) -> and#(active(X1),X2) p24: active#(and(X1,X2)) -> active#(X1) p25: U11#(mark(X1),X2) -> U11#(X1,X2) p26: U21#(mark(X1),X2,X3) -> U21#(X1,X2,X3) p27: s#(mark(X)) -> s#(X) p28: plus#(mark(X1),X2) -> plus#(X1,X2) p29: plus#(X1,mark(X2)) -> plus#(X1,X2) p30: and#(mark(X1),X2) -> and#(X1,X2) p31: proper#(U11(X1,X2)) -> U11#(proper(X1),proper(X2)) p32: proper#(U11(X1,X2)) -> proper#(X1) p33: proper#(U11(X1,X2)) -> proper#(X2) p34: proper#(U21(X1,X2,X3)) -> U21#(proper(X1),proper(X2),proper(X3)) p35: proper#(U21(X1,X2,X3)) -> proper#(X1) p36: proper#(U21(X1,X2,X3)) -> proper#(X2) p37: proper#(U21(X1,X2,X3)) -> proper#(X3) p38: proper#(s(X)) -> s#(proper(X)) p39: proper#(s(X)) -> proper#(X) p40: proper#(plus(X1,X2)) -> plus#(proper(X1),proper(X2)) p41: proper#(plus(X1,X2)) -> proper#(X1) p42: proper#(plus(X1,X2)) -> proper#(X2) p43: proper#(and(X1,X2)) -> and#(proper(X1),proper(X2)) p44: proper#(and(X1,X2)) -> proper#(X1) p45: proper#(and(X1,X2)) -> proper#(X2) p46: proper#(isNat(X)) -> isNat#(proper(X)) p47: proper#(isNat(X)) -> proper#(X) p48: U11#(ok(X1),ok(X2)) -> U11#(X1,X2) p49: U21#(ok(X1),ok(X2),ok(X3)) -> U21#(X1,X2,X3) p50: s#(ok(X)) -> s#(X) p51: plus#(ok(X1),ok(X2)) -> plus#(X1,X2) p52: and#(ok(X1),ok(X2)) -> and#(X1,X2) p53: isNat#(ok(X)) -> isNat#(X) p54: top#(mark(X)) -> top#(proper(X)) p55: top#(mark(X)) -> proper#(X) p56: top#(ok(X)) -> top#(active(X)) p57: top#(ok(X)) -> active#(X) and R consists of: r1: active(U11(tt(),N)) -> mark(N) r2: active(U21(tt(),M,N)) -> mark(s(plus(N,M))) r3: active(and(tt(),X)) -> mark(X) r4: active(isNat(|0|())) -> mark(tt()) r5: active(isNat(plus(V1,V2))) -> mark(and(isNat(V1),isNat(V2))) r6: active(isNat(s(V1))) -> mark(isNat(V1)) r7: active(plus(N,|0|())) -> mark(U11(isNat(N),N)) r8: active(plus(N,s(M))) -> mark(U21(and(isNat(M),isNat(N)),M,N)) r9: active(U11(X1,X2)) -> U11(active(X1),X2) r10: active(U21(X1,X2,X3)) -> U21(active(X1),X2,X3) r11: active(s(X)) -> s(active(X)) r12: active(plus(X1,X2)) -> plus(active(X1),X2) r13: active(plus(X1,X2)) -> plus(X1,active(X2)) r14: active(and(X1,X2)) -> and(active(X1),X2) r15: U11(mark(X1),X2) -> mark(U11(X1,X2)) r16: U21(mark(X1),X2,X3) -> mark(U21(X1,X2,X3)) r17: s(mark(X)) -> mark(s(X)) r18: plus(mark(X1),X2) -> mark(plus(X1,X2)) r19: plus(X1,mark(X2)) -> mark(plus(X1,X2)) r20: and(mark(X1),X2) -> mark(and(X1,X2)) r21: proper(U11(X1,X2)) -> U11(proper(X1),proper(X2)) r22: proper(tt()) -> ok(tt()) r23: proper(U21(X1,X2,X3)) -> U21(proper(X1),proper(X2),proper(X3)) r24: proper(s(X)) -> s(proper(X)) r25: proper(plus(X1,X2)) -> plus(proper(X1),proper(X2)) r26: proper(and(X1,X2)) -> and(proper(X1),proper(X2)) r27: proper(isNat(X)) -> isNat(proper(X)) r28: proper(|0|()) -> ok(|0|()) r29: U11(ok(X1),ok(X2)) -> ok(U11(X1,X2)) r30: U21(ok(X1),ok(X2),ok(X3)) -> ok(U21(X1,X2,X3)) r31: s(ok(X)) -> ok(s(X)) r32: plus(ok(X1),ok(X2)) -> ok(plus(X1,X2)) r33: and(ok(X1),ok(X2)) -> ok(and(X1,X2)) r34: isNat(ok(X)) -> ok(isNat(X)) r35: top(mark(X)) -> top(proper(X)) r36: top(ok(X)) -> top(active(X)) The estimated dependency graph contains the following SCCs: {p54, p56} {p14, p16, p18, p20, p22, p24} {p32, p33, p35, p36, p37, p39, p41, p42, p44, p45, p47} {p27, p50} {p28, p29, p51} {p30, p52} {p53} {p25, p48} {p26, p49} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: top#(ok(X)) -> top#(active(X)) p2: top#(mark(X)) -> top#(proper(X)) and R consists of: r1: active(U11(tt(),N)) -> mark(N) r2: active(U21(tt(),M,N)) -> mark(s(plus(N,M))) r3: active(and(tt(),X)) -> mark(X) r4: active(isNat(|0|())) -> mark(tt()) r5: active(isNat(plus(V1,V2))) -> mark(and(isNat(V1),isNat(V2))) r6: active(isNat(s(V1))) -> mark(isNat(V1)) r7: active(plus(N,|0|())) -> mark(U11(isNat(N),N)) r8: active(plus(N,s(M))) -> mark(U21(and(isNat(M),isNat(N)),M,N)) r9: active(U11(X1,X2)) -> U11(active(X1),X2) r10: active(U21(X1,X2,X3)) -> U21(active(X1),X2,X3) r11: active(s(X)) -> s(active(X)) r12: active(plus(X1,X2)) -> plus(active(X1),X2) r13: active(plus(X1,X2)) -> plus(X1,active(X2)) r14: active(and(X1,X2)) -> and(active(X1),X2) r15: U11(mark(X1),X2) -> mark(U11(X1,X2)) r16: U21(mark(X1),X2,X3) -> mark(U21(X1,X2,X3)) r17: s(mark(X)) -> mark(s(X)) r18: plus(mark(X1),X2) -> mark(plus(X1,X2)) r19: plus(X1,mark(X2)) -> mark(plus(X1,X2)) r20: and(mark(X1),X2) -> mark(and(X1,X2)) r21: proper(U11(X1,X2)) -> U11(proper(X1),proper(X2)) r22: proper(tt()) -> ok(tt()) r23: proper(U21(X1,X2,X3)) -> U21(proper(X1),proper(X2),proper(X3)) r24: proper(s(X)) -> s(proper(X)) r25: proper(plus(X1,X2)) -> plus(proper(X1),proper(X2)) r26: proper(and(X1,X2)) -> and(proper(X1),proper(X2)) r27: proper(isNat(X)) -> isNat(proper(X)) r28: proper(|0|()) -> ok(|0|()) r29: U11(ok(X1),ok(X2)) -> ok(U11(X1,X2)) r30: U21(ok(X1),ok(X2),ok(X3)) -> ok(U21(X1,X2,X3)) r31: s(ok(X)) -> ok(s(X)) r32: plus(ok(X1),ok(X2)) -> ok(plus(X1,X2)) r33: and(ok(X1),ok(X2)) -> ok(and(X1,X2)) r34: isNat(ok(X)) -> ok(isNat(X)) r35: top(mark(X)) -> top(proper(X)) r36: top(ok(X)) -> top(active(X)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34 Take the reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: top#_A(x1) = ((0,0,0,0),(1,0,0,0),(1,1,0,0),(1,0,1,0)) x1 ok_A(x1) = x1 active_A(x1) = ((1,0,0,0),(0,1,0,0),(0,0,1,0),(1,0,1,1)) x1 + (0,0,0,1) mark_A(x1) = x1 + (0,0,3,0) proper_A(x1) = x1 U11_A(x1,x2) = x1 + ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,0,1,1)) x2 + (1,1,1,1) U21_A(x1,x2,x3) = ((1,0,0,0),(0,1,0,0),(1,0,1,0),(1,0,1,0)) x1 + ((1,0,0,0),(1,1,0,0),(1,1,1,0),(0,0,0,0)) x2 + ((1,0,0,0),(0,1,0,0),(0,1,0,0),(0,0,0,0)) x3 + (9,3,1,1) s_A(x1) = ((1,0,0,0),(0,1,0,0),(1,1,1,0),(0,0,0,0)) x1 + (3,1,1,0) plus_A(x1,x2) = ((1,0,0,0),(0,1,0,0),(1,0,1,0),(0,0,0,0)) x1 + ((1,0,0,0),(1,1,0,0),(1,0,1,0),(0,0,0,0)) x2 + (6,1,1,1) and_A(x1,x2) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,0,0,1)) x1 + ((1,0,0,0),(0,1,0,0),(1,0,1,0),(1,1,1,0)) x2 + (0,0,3,0) isNat_A(x1) = ((0,0,0,0),(0,0,0,0),(1,0,0,0),(0,1,0,0)) x1 tt_A() = (0,0,1,1) |0|_A() = (4,1,1,1) The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: top#(ok(X)) -> top#(active(X)) and R consists of: r1: active(U11(tt(),N)) -> mark(N) r2: active(U21(tt(),M,N)) -> mark(s(plus(N,M))) r3: active(and(tt(),X)) -> mark(X) r4: active(isNat(|0|())) -> mark(tt()) r5: active(isNat(plus(V1,V2))) -> mark(and(isNat(V1),isNat(V2))) r6: active(isNat(s(V1))) -> mark(isNat(V1)) r7: active(plus(N,|0|())) -> mark(U11(isNat(N),N)) r8: active(plus(N,s(M))) -> mark(U21(and(isNat(M),isNat(N)),M,N)) r9: active(U11(X1,X2)) -> U11(active(X1),X2) r10: active(U21(X1,X2,X3)) -> U21(active(X1),X2,X3) r11: active(s(X)) -> s(active(X)) r12: active(plus(X1,X2)) -> plus(active(X1),X2) r13: active(plus(X1,X2)) -> plus(X1,active(X2)) r14: active(and(X1,X2)) -> and(active(X1),X2) r15: U11(mark(X1),X2) -> mark(U11(X1,X2)) r16: U21(mark(X1),X2,X3) -> mark(U21(X1,X2,X3)) r17: s(mark(X)) -> mark(s(X)) r18: plus(mark(X1),X2) -> mark(plus(X1,X2)) r19: plus(X1,mark(X2)) -> mark(plus(X1,X2)) r20: and(mark(X1),X2) -> mark(and(X1,X2)) r21: proper(U11(X1,X2)) -> U11(proper(X1),proper(X2)) r22: proper(tt()) -> ok(tt()) r23: proper(U21(X1,X2,X3)) -> U21(proper(X1),proper(X2),proper(X3)) r24: proper(s(X)) -> s(proper(X)) r25: proper(plus(X1,X2)) -> plus(proper(X1),proper(X2)) r26: proper(and(X1,X2)) -> and(proper(X1),proper(X2)) r27: proper(isNat(X)) -> isNat(proper(X)) r28: proper(|0|()) -> ok(|0|()) r29: U11(ok(X1),ok(X2)) -> ok(U11(X1,X2)) r30: U21(ok(X1),ok(X2),ok(X3)) -> ok(U21(X1,X2,X3)) r31: s(ok(X)) -> ok(s(X)) r32: plus(ok(X1),ok(X2)) -> ok(plus(X1,X2)) r33: and(ok(X1),ok(X2)) -> ok(and(X1,X2)) r34: isNat(ok(X)) -> ok(isNat(X)) r35: top(mark(X)) -> top(proper(X)) r36: top(ok(X)) -> top(active(X)) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: top#(ok(X)) -> top#(active(X)) and R consists of: r1: active(U11(tt(),N)) -> mark(N) r2: active(U21(tt(),M,N)) -> mark(s(plus(N,M))) r3: active(and(tt(),X)) -> mark(X) r4: active(isNat(|0|())) -> mark(tt()) r5: active(isNat(plus(V1,V2))) -> mark(and(isNat(V1),isNat(V2))) r6: active(isNat(s(V1))) -> mark(isNat(V1)) r7: active(plus(N,|0|())) -> mark(U11(isNat(N),N)) r8: active(plus(N,s(M))) -> mark(U21(and(isNat(M),isNat(N)),M,N)) r9: active(U11(X1,X2)) -> U11(active(X1),X2) r10: active(U21(X1,X2,X3)) -> U21(active(X1),X2,X3) r11: active(s(X)) -> s(active(X)) r12: active(plus(X1,X2)) -> plus(active(X1),X2) r13: active(plus(X1,X2)) -> plus(X1,active(X2)) r14: active(and(X1,X2)) -> and(active(X1),X2) r15: U11(mark(X1),X2) -> mark(U11(X1,X2)) r16: U21(mark(X1),X2,X3) -> mark(U21(X1,X2,X3)) r17: s(mark(X)) -> mark(s(X)) r18: plus(mark(X1),X2) -> mark(plus(X1,X2)) r19: plus(X1,mark(X2)) -> mark(plus(X1,X2)) r20: and(mark(X1),X2) -> mark(and(X1,X2)) r21: proper(U11(X1,X2)) -> U11(proper(X1),proper(X2)) r22: proper(tt()) -> ok(tt()) r23: proper(U21(X1,X2,X3)) -> U21(proper(X1),proper(X2),proper(X3)) r24: proper(s(X)) -> s(proper(X)) r25: proper(plus(X1,X2)) -> plus(proper(X1),proper(X2)) r26: proper(and(X1,X2)) -> and(proper(X1),proper(X2)) r27: proper(isNat(X)) -> isNat(proper(X)) r28: proper(|0|()) -> ok(|0|()) r29: U11(ok(X1),ok(X2)) -> ok(U11(X1,X2)) r30: U21(ok(X1),ok(X2),ok(X3)) -> ok(U21(X1,X2,X3)) r31: s(ok(X)) -> ok(s(X)) r32: plus(ok(X1),ok(X2)) -> ok(plus(X1,X2)) r33: and(ok(X1),ok(X2)) -> ok(and(X1,X2)) r34: isNat(ok(X)) -> ok(isNat(X)) r35: top(mark(X)) -> top(proper(X)) r36: top(ok(X)) -> top(active(X)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r29, r30, r31, r32, r33, r34 Take the reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: top#_A(x1) = ((1,0,0,0),(0,1,0,0),(0,1,1,0),(1,0,1,0)) x1 ok_A(x1) = ((1,0,0,0),(1,0,0,0),(0,0,0,0),(1,0,0,0)) x1 + (5,12,0,9) active_A(x1) = ((1,0,0,0),(1,1,0,0),(1,0,0,0),(0,0,0,0)) x1 + (4,1,12,8) U11_A(x1,x2) = x1 + ((0,0,0,0),(1,0,0,0),(0,0,0,0),(0,0,0,0)) x2 + (0,1,0,8) mark_A(x1) = ((0,0,0,0),(1,0,0,0),(1,1,0,0),(1,1,1,0)) x1 + (1,2,25,1) U21_A(x1,x2,x3) = ((1,0,0,0),(0,1,0,0),(1,0,1,0),(1,1,0,1)) x2 + ((0,0,0,0),(0,0,0,0),(0,0,0,0),(1,0,0,0)) x3 + (2,3,15,9) s_A(x1) = ((1,0,0,0),(1,0,0,0),(0,0,0,0),(0,0,0,0)) x1 + (3,10,1,1) plus_A(x1,x2) = ((1,0,0,0),(0,1,0,0),(0,1,1,0),(1,0,0,1)) x1 + x2 + (16,1,0,1) and_A(x1,x2) = ((0,0,0,0),(1,0,0,0),(0,1,0,0),(0,0,1,0)) x1 + ((1,0,0,0),(1,0,0,0),(1,0,0,0),(0,0,0,0)) x2 + (2,4,30,1) isNat_A(x1) = ((1,0,0,0),(1,1,0,0),(1,0,0,0),(0,0,0,0)) x1 + (4,0,1,1) tt_A() = (8,0,0,1) |0|_A() = (1,1,0,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(and(X1,X2)) -> active#(X1) p2: active#(plus(X1,X2)) -> active#(X2) p3: active#(plus(X1,X2)) -> active#(X1) p4: active#(s(X)) -> active#(X) p5: active#(U21(X1,X2,X3)) -> active#(X1) p6: active#(U11(X1,X2)) -> active#(X1) and R consists of: r1: active(U11(tt(),N)) -> mark(N) r2: active(U21(tt(),M,N)) -> mark(s(plus(N,M))) r3: active(and(tt(),X)) -> mark(X) r4: active(isNat(|0|())) -> mark(tt()) r5: active(isNat(plus(V1,V2))) -> mark(and(isNat(V1),isNat(V2))) r6: active(isNat(s(V1))) -> mark(isNat(V1)) r7: active(plus(N,|0|())) -> mark(U11(isNat(N),N)) r8: active(plus(N,s(M))) -> mark(U21(and(isNat(M),isNat(N)),M,N)) r9: active(U11(X1,X2)) -> U11(active(X1),X2) r10: active(U21(X1,X2,X3)) -> U21(active(X1),X2,X3) r11: active(s(X)) -> s(active(X)) r12: active(plus(X1,X2)) -> plus(active(X1),X2) r13: active(plus(X1,X2)) -> plus(X1,active(X2)) r14: active(and(X1,X2)) -> and(active(X1),X2) r15: U11(mark(X1),X2) -> mark(U11(X1,X2)) r16: U21(mark(X1),X2,X3) -> mark(U21(X1,X2,X3)) r17: s(mark(X)) -> mark(s(X)) r18: plus(mark(X1),X2) -> mark(plus(X1,X2)) r19: plus(X1,mark(X2)) -> mark(plus(X1,X2)) r20: and(mark(X1),X2) -> mark(and(X1,X2)) r21: proper(U11(X1,X2)) -> U11(proper(X1),proper(X2)) r22: proper(tt()) -> ok(tt()) r23: proper(U21(X1,X2,X3)) -> U21(proper(X1),proper(X2),proper(X3)) r24: proper(s(X)) -> s(proper(X)) r25: proper(plus(X1,X2)) -> plus(proper(X1),proper(X2)) r26: proper(and(X1,X2)) -> and(proper(X1),proper(X2)) r27: proper(isNat(X)) -> isNat(proper(X)) r28: proper(|0|()) -> ok(|0|()) r29: U11(ok(X1),ok(X2)) -> ok(U11(X1,X2)) r30: U21(ok(X1),ok(X2),ok(X3)) -> ok(U21(X1,X2,X3)) r31: s(ok(X)) -> ok(s(X)) r32: plus(ok(X1),ok(X2)) -> ok(plus(X1,X2)) r33: and(ok(X1),ok(X2)) -> ok(and(X1,X2)) r34: isNat(ok(X)) -> ok(isNat(X)) r35: top(mark(X)) -> top(proper(X)) r36: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: active#_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 and_A(x1,x2) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x2 + (1,1,1,1) plus_A(x1,x2) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x2 + (1,1,1,1) s_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) U21_A(x1,x2,x3) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x2 + ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x3 + (1,1,1,1) U11_A(x1,x2) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x2 + (1,1,1,1) The next rules are strictly ordered: p1, p2, p3, p4, p5, p6 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: proper#(isNat(X)) -> proper#(X) p2: proper#(and(X1,X2)) -> proper#(X2) p3: proper#(and(X1,X2)) -> proper#(X1) p4: proper#(plus(X1,X2)) -> proper#(X2) p5: proper#(plus(X1,X2)) -> proper#(X1) p6: proper#(s(X)) -> proper#(X) p7: proper#(U21(X1,X2,X3)) -> proper#(X3) p8: proper#(U21(X1,X2,X3)) -> proper#(X2) p9: proper#(U21(X1,X2,X3)) -> proper#(X1) p10: proper#(U11(X1,X2)) -> proper#(X2) p11: proper#(U11(X1,X2)) -> proper#(X1) and R consists of: r1: active(U11(tt(),N)) -> mark(N) r2: active(U21(tt(),M,N)) -> mark(s(plus(N,M))) r3: active(and(tt(),X)) -> mark(X) r4: active(isNat(|0|())) -> mark(tt()) r5: active(isNat(plus(V1,V2))) -> mark(and(isNat(V1),isNat(V2))) r6: active(isNat(s(V1))) -> mark(isNat(V1)) r7: active(plus(N,|0|())) -> mark(U11(isNat(N),N)) r8: active(plus(N,s(M))) -> mark(U21(and(isNat(M),isNat(N)),M,N)) r9: active(U11(X1,X2)) -> U11(active(X1),X2) r10: active(U21(X1,X2,X3)) -> U21(active(X1),X2,X3) r11: active(s(X)) -> s(active(X)) r12: active(plus(X1,X2)) -> plus(active(X1),X2) r13: active(plus(X1,X2)) -> plus(X1,active(X2)) r14: active(and(X1,X2)) -> and(active(X1),X2) r15: U11(mark(X1),X2) -> mark(U11(X1,X2)) r16: U21(mark(X1),X2,X3) -> mark(U21(X1,X2,X3)) r17: s(mark(X)) -> mark(s(X)) r18: plus(mark(X1),X2) -> mark(plus(X1,X2)) r19: plus(X1,mark(X2)) -> mark(plus(X1,X2)) r20: and(mark(X1),X2) -> mark(and(X1,X2)) r21: proper(U11(X1,X2)) -> U11(proper(X1),proper(X2)) r22: proper(tt()) -> ok(tt()) r23: proper(U21(X1,X2,X3)) -> U21(proper(X1),proper(X2),proper(X3)) r24: proper(s(X)) -> s(proper(X)) r25: proper(plus(X1,X2)) -> plus(proper(X1),proper(X2)) r26: proper(and(X1,X2)) -> and(proper(X1),proper(X2)) r27: proper(isNat(X)) -> isNat(proper(X)) r28: proper(|0|()) -> ok(|0|()) r29: U11(ok(X1),ok(X2)) -> ok(U11(X1,X2)) r30: U21(ok(X1),ok(X2),ok(X3)) -> ok(U21(X1,X2,X3)) r31: s(ok(X)) -> ok(s(X)) r32: plus(ok(X1),ok(X2)) -> ok(plus(X1,X2)) r33: and(ok(X1),ok(X2)) -> ok(and(X1,X2)) r34: isNat(ok(X)) -> ok(isNat(X)) r35: top(mark(X)) -> top(proper(X)) r36: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: proper#_A(x1) = ((1,0,0,0),(0,1,0,0),(1,1,1,0),(1,1,1,1)) x1 isNat_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) and_A(x1,x2) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x2 + (1,1,1,1) plus_A(x1,x2) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x2 + (1,1,1,1) s_A(x1) = ((1,0,0,0),(1,1,0,0),(1,0,1,0),(1,1,1,1)) x1 + (1,1,1,1) U21_A(x1,x2,x3) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x2 + ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x3 + (1,1,1,1) U11_A(x1,x2) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x2 + (1,1,1,1) The next rules are strictly ordered: p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: s#(mark(X)) -> s#(X) p2: s#(ok(X)) -> s#(X) and R consists of: r1: active(U11(tt(),N)) -> mark(N) r2: active(U21(tt(),M,N)) -> mark(s(plus(N,M))) r3: active(and(tt(),X)) -> mark(X) r4: active(isNat(|0|())) -> mark(tt()) r5: active(isNat(plus(V1,V2))) -> mark(and(isNat(V1),isNat(V2))) r6: active(isNat(s(V1))) -> mark(isNat(V1)) r7: active(plus(N,|0|())) -> mark(U11(isNat(N),N)) r8: active(plus(N,s(M))) -> mark(U21(and(isNat(M),isNat(N)),M,N)) r9: active(U11(X1,X2)) -> U11(active(X1),X2) r10: active(U21(X1,X2,X3)) -> U21(active(X1),X2,X3) r11: active(s(X)) -> s(active(X)) r12: active(plus(X1,X2)) -> plus(active(X1),X2) r13: active(plus(X1,X2)) -> plus(X1,active(X2)) r14: active(and(X1,X2)) -> and(active(X1),X2) r15: U11(mark(X1),X2) -> mark(U11(X1,X2)) r16: U21(mark(X1),X2,X3) -> mark(U21(X1,X2,X3)) r17: s(mark(X)) -> mark(s(X)) r18: plus(mark(X1),X2) -> mark(plus(X1,X2)) r19: plus(X1,mark(X2)) -> mark(plus(X1,X2)) r20: and(mark(X1),X2) -> mark(and(X1,X2)) r21: proper(U11(X1,X2)) -> U11(proper(X1),proper(X2)) r22: proper(tt()) -> ok(tt()) r23: proper(U21(X1,X2,X3)) -> U21(proper(X1),proper(X2),proper(X3)) r24: proper(s(X)) -> s(proper(X)) r25: proper(plus(X1,X2)) -> plus(proper(X1),proper(X2)) r26: proper(and(X1,X2)) -> and(proper(X1),proper(X2)) r27: proper(isNat(X)) -> isNat(proper(X)) r28: proper(|0|()) -> ok(|0|()) r29: U11(ok(X1),ok(X2)) -> ok(U11(X1,X2)) r30: U21(ok(X1),ok(X2),ok(X3)) -> ok(U21(X1,X2,X3)) r31: s(ok(X)) -> ok(s(X)) r32: plus(ok(X1),ok(X2)) -> ok(plus(X1,X2)) r33: and(ok(X1),ok(X2)) -> ok(and(X1,X2)) r34: isNat(ok(X)) -> ok(isNat(X)) r35: top(mark(X)) -> top(proper(X)) r36: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: s#_A(x1) = ((1,0,0,0),(0,1,0,0),(0,0,1,0),(0,1,1,1)) x1 mark_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) ok_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: plus#(mark(X1),X2) -> plus#(X1,X2) p2: plus#(ok(X1),ok(X2)) -> plus#(X1,X2) p3: plus#(X1,mark(X2)) -> plus#(X1,X2) and R consists of: r1: active(U11(tt(),N)) -> mark(N) r2: active(U21(tt(),M,N)) -> mark(s(plus(N,M))) r3: active(and(tt(),X)) -> mark(X) r4: active(isNat(|0|())) -> mark(tt()) r5: active(isNat(plus(V1,V2))) -> mark(and(isNat(V1),isNat(V2))) r6: active(isNat(s(V1))) -> mark(isNat(V1)) r7: active(plus(N,|0|())) -> mark(U11(isNat(N),N)) r8: active(plus(N,s(M))) -> mark(U21(and(isNat(M),isNat(N)),M,N)) r9: active(U11(X1,X2)) -> U11(active(X1),X2) r10: active(U21(X1,X2,X3)) -> U21(active(X1),X2,X3) r11: active(s(X)) -> s(active(X)) r12: active(plus(X1,X2)) -> plus(active(X1),X2) r13: active(plus(X1,X2)) -> plus(X1,active(X2)) r14: active(and(X1,X2)) -> and(active(X1),X2) r15: U11(mark(X1),X2) -> mark(U11(X1,X2)) r16: U21(mark(X1),X2,X3) -> mark(U21(X1,X2,X3)) r17: s(mark(X)) -> mark(s(X)) r18: plus(mark(X1),X2) -> mark(plus(X1,X2)) r19: plus(X1,mark(X2)) -> mark(plus(X1,X2)) r20: and(mark(X1),X2) -> mark(and(X1,X2)) r21: proper(U11(X1,X2)) -> U11(proper(X1),proper(X2)) r22: proper(tt()) -> ok(tt()) r23: proper(U21(X1,X2,X3)) -> U21(proper(X1),proper(X2),proper(X3)) r24: proper(s(X)) -> s(proper(X)) r25: proper(plus(X1,X2)) -> plus(proper(X1),proper(X2)) r26: proper(and(X1,X2)) -> and(proper(X1),proper(X2)) r27: proper(isNat(X)) -> isNat(proper(X)) r28: proper(|0|()) -> ok(|0|()) r29: U11(ok(X1),ok(X2)) -> ok(U11(X1,X2)) r30: U21(ok(X1),ok(X2),ok(X3)) -> ok(U21(X1,X2,X3)) r31: s(ok(X)) -> ok(s(X)) r32: plus(ok(X1),ok(X2)) -> ok(plus(X1,X2)) r33: and(ok(X1),ok(X2)) -> ok(and(X1,X2)) r34: isNat(ok(X)) -> ok(isNat(X)) r35: top(mark(X)) -> top(proper(X)) r36: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: plus#_A(x1,x2) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,0,1,1)) x1 + ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x2 mark_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) ok_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) The next rules are strictly ordered: p1, p2, p3 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: and#(mark(X1),X2) -> and#(X1,X2) p2: and#(ok(X1),ok(X2)) -> and#(X1,X2) and R consists of: r1: active(U11(tt(),N)) -> mark(N) r2: active(U21(tt(),M,N)) -> mark(s(plus(N,M))) r3: active(and(tt(),X)) -> mark(X) r4: active(isNat(|0|())) -> mark(tt()) r5: active(isNat(plus(V1,V2))) -> mark(and(isNat(V1),isNat(V2))) r6: active(isNat(s(V1))) -> mark(isNat(V1)) r7: active(plus(N,|0|())) -> mark(U11(isNat(N),N)) r8: active(plus(N,s(M))) -> mark(U21(and(isNat(M),isNat(N)),M,N)) r9: active(U11(X1,X2)) -> U11(active(X1),X2) r10: active(U21(X1,X2,X3)) -> U21(active(X1),X2,X3) r11: active(s(X)) -> s(active(X)) r12: active(plus(X1,X2)) -> plus(active(X1),X2) r13: active(plus(X1,X2)) -> plus(X1,active(X2)) r14: active(and(X1,X2)) -> and(active(X1),X2) r15: U11(mark(X1),X2) -> mark(U11(X1,X2)) r16: U21(mark(X1),X2,X3) -> mark(U21(X1,X2,X3)) r17: s(mark(X)) -> mark(s(X)) r18: plus(mark(X1),X2) -> mark(plus(X1,X2)) r19: plus(X1,mark(X2)) -> mark(plus(X1,X2)) r20: and(mark(X1),X2) -> mark(and(X1,X2)) r21: proper(U11(X1,X2)) -> U11(proper(X1),proper(X2)) r22: proper(tt()) -> ok(tt()) r23: proper(U21(X1,X2,X3)) -> U21(proper(X1),proper(X2),proper(X3)) r24: proper(s(X)) -> s(proper(X)) r25: proper(plus(X1,X2)) -> plus(proper(X1),proper(X2)) r26: proper(and(X1,X2)) -> and(proper(X1),proper(X2)) r27: proper(isNat(X)) -> isNat(proper(X)) r28: proper(|0|()) -> ok(|0|()) r29: U11(ok(X1),ok(X2)) -> ok(U11(X1,X2)) r30: U21(ok(X1),ok(X2),ok(X3)) -> ok(U21(X1,X2,X3)) r31: s(ok(X)) -> ok(s(X)) r32: plus(ok(X1),ok(X2)) -> ok(plus(X1,X2)) r33: and(ok(X1),ok(X2)) -> ok(and(X1,X2)) r34: isNat(ok(X)) -> ok(isNat(X)) r35: top(mark(X)) -> top(proper(X)) r36: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: and#_A(x1,x2) = ((1,0,0,0),(1,1,0,0),(1,1,0,0),(1,1,1,0)) x1 + ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x2 mark_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,0,0),(1,1,1,0)) x1 + (1,1,1,1) ok_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(ok(X)) -> isNat#(X) and R consists of: r1: active(U11(tt(),N)) -> mark(N) r2: active(U21(tt(),M,N)) -> mark(s(plus(N,M))) r3: active(and(tt(),X)) -> mark(X) r4: active(isNat(|0|())) -> mark(tt()) r5: active(isNat(plus(V1,V2))) -> mark(and(isNat(V1),isNat(V2))) r6: active(isNat(s(V1))) -> mark(isNat(V1)) r7: active(plus(N,|0|())) -> mark(U11(isNat(N),N)) r8: active(plus(N,s(M))) -> mark(U21(and(isNat(M),isNat(N)),M,N)) r9: active(U11(X1,X2)) -> U11(active(X1),X2) r10: active(U21(X1,X2,X3)) -> U21(active(X1),X2,X3) r11: active(s(X)) -> s(active(X)) r12: active(plus(X1,X2)) -> plus(active(X1),X2) r13: active(plus(X1,X2)) -> plus(X1,active(X2)) r14: active(and(X1,X2)) -> and(active(X1),X2) r15: U11(mark(X1),X2) -> mark(U11(X1,X2)) r16: U21(mark(X1),X2,X3) -> mark(U21(X1,X2,X3)) r17: s(mark(X)) -> mark(s(X)) r18: plus(mark(X1),X2) -> mark(plus(X1,X2)) r19: plus(X1,mark(X2)) -> mark(plus(X1,X2)) r20: and(mark(X1),X2) -> mark(and(X1,X2)) r21: proper(U11(X1,X2)) -> U11(proper(X1),proper(X2)) r22: proper(tt()) -> ok(tt()) r23: proper(U21(X1,X2,X3)) -> U21(proper(X1),proper(X2),proper(X3)) r24: proper(s(X)) -> s(proper(X)) r25: proper(plus(X1,X2)) -> plus(proper(X1),proper(X2)) r26: proper(and(X1,X2)) -> and(proper(X1),proper(X2)) r27: proper(isNat(X)) -> isNat(proper(X)) r28: proper(|0|()) -> ok(|0|()) r29: U11(ok(X1),ok(X2)) -> ok(U11(X1,X2)) r30: U21(ok(X1),ok(X2),ok(X3)) -> ok(U21(X1,X2,X3)) r31: s(ok(X)) -> ok(s(X)) r32: plus(ok(X1),ok(X2)) -> ok(plus(X1,X2)) r33: and(ok(X1),ok(X2)) -> ok(and(X1,X2)) r34: isNat(ok(X)) -> ok(isNat(X)) r35: top(mark(X)) -> top(proper(X)) r36: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: isNat#_A(x1) = ((1,0,0,0),(0,1,0,0),(0,0,1,0),(0,1,1,1)) x1 ok_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,0)) x1 + (1,0,0,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U11#(mark(X1),X2) -> U11#(X1,X2) p2: U11#(ok(X1),ok(X2)) -> U11#(X1,X2) and R consists of: r1: active(U11(tt(),N)) -> mark(N) r2: active(U21(tt(),M,N)) -> mark(s(plus(N,M))) r3: active(and(tt(),X)) -> mark(X) r4: active(isNat(|0|())) -> mark(tt()) r5: active(isNat(plus(V1,V2))) -> mark(and(isNat(V1),isNat(V2))) r6: active(isNat(s(V1))) -> mark(isNat(V1)) r7: active(plus(N,|0|())) -> mark(U11(isNat(N),N)) r8: active(plus(N,s(M))) -> mark(U21(and(isNat(M),isNat(N)),M,N)) r9: active(U11(X1,X2)) -> U11(active(X1),X2) r10: active(U21(X1,X2,X3)) -> U21(active(X1),X2,X3) r11: active(s(X)) -> s(active(X)) r12: active(plus(X1,X2)) -> plus(active(X1),X2) r13: active(plus(X1,X2)) -> plus(X1,active(X2)) r14: active(and(X1,X2)) -> and(active(X1),X2) r15: U11(mark(X1),X2) -> mark(U11(X1,X2)) r16: U21(mark(X1),X2,X3) -> mark(U21(X1,X2,X3)) r17: s(mark(X)) -> mark(s(X)) r18: plus(mark(X1),X2) -> mark(plus(X1,X2)) r19: plus(X1,mark(X2)) -> mark(plus(X1,X2)) r20: and(mark(X1),X2) -> mark(and(X1,X2)) r21: proper(U11(X1,X2)) -> U11(proper(X1),proper(X2)) r22: proper(tt()) -> ok(tt()) r23: proper(U21(X1,X2,X3)) -> U21(proper(X1),proper(X2),proper(X3)) r24: proper(s(X)) -> s(proper(X)) r25: proper(plus(X1,X2)) -> plus(proper(X1),proper(X2)) r26: proper(and(X1,X2)) -> and(proper(X1),proper(X2)) r27: proper(isNat(X)) -> isNat(proper(X)) r28: proper(|0|()) -> ok(|0|()) r29: U11(ok(X1),ok(X2)) -> ok(U11(X1,X2)) r30: U21(ok(X1),ok(X2),ok(X3)) -> ok(U21(X1,X2,X3)) r31: s(ok(X)) -> ok(s(X)) r32: plus(ok(X1),ok(X2)) -> ok(plus(X1,X2)) r33: and(ok(X1),ok(X2)) -> ok(and(X1,X2)) r34: isNat(ok(X)) -> ok(isNat(X)) r35: top(mark(X)) -> top(proper(X)) r36: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: U11#_A(x1,x2) = ((1,0,0,0),(1,1,0,0),(1,1,0,0),(1,1,1,0)) x1 + ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x2 mark_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,0,0),(1,1,1,0)) x1 + (1,1,1,1) ok_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U21#(mark(X1),X2,X3) -> U21#(X1,X2,X3) p2: U21#(ok(X1),ok(X2),ok(X3)) -> U21#(X1,X2,X3) and R consists of: r1: active(U11(tt(),N)) -> mark(N) r2: active(U21(tt(),M,N)) -> mark(s(plus(N,M))) r3: active(and(tt(),X)) -> mark(X) r4: active(isNat(|0|())) -> mark(tt()) r5: active(isNat(plus(V1,V2))) -> mark(and(isNat(V1),isNat(V2))) r6: active(isNat(s(V1))) -> mark(isNat(V1)) r7: active(plus(N,|0|())) -> mark(U11(isNat(N),N)) r8: active(plus(N,s(M))) -> mark(U21(and(isNat(M),isNat(N)),M,N)) r9: active(U11(X1,X2)) -> U11(active(X1),X2) r10: active(U21(X1,X2,X3)) -> U21(active(X1),X2,X3) r11: active(s(X)) -> s(active(X)) r12: active(plus(X1,X2)) -> plus(active(X1),X2) r13: active(plus(X1,X2)) -> plus(X1,active(X2)) r14: active(and(X1,X2)) -> and(active(X1),X2) r15: U11(mark(X1),X2) -> mark(U11(X1,X2)) r16: U21(mark(X1),X2,X3) -> mark(U21(X1,X2,X3)) r17: s(mark(X)) -> mark(s(X)) r18: plus(mark(X1),X2) -> mark(plus(X1,X2)) r19: plus(X1,mark(X2)) -> mark(plus(X1,X2)) r20: and(mark(X1),X2) -> mark(and(X1,X2)) r21: proper(U11(X1,X2)) -> U11(proper(X1),proper(X2)) r22: proper(tt()) -> ok(tt()) r23: proper(U21(X1,X2,X3)) -> U21(proper(X1),proper(X2),proper(X3)) r24: proper(s(X)) -> s(proper(X)) r25: proper(plus(X1,X2)) -> plus(proper(X1),proper(X2)) r26: proper(and(X1,X2)) -> and(proper(X1),proper(X2)) r27: proper(isNat(X)) -> isNat(proper(X)) r28: proper(|0|()) -> ok(|0|()) r29: U11(ok(X1),ok(X2)) -> ok(U11(X1,X2)) r30: U21(ok(X1),ok(X2),ok(X3)) -> ok(U21(X1,X2,X3)) r31: s(ok(X)) -> ok(s(X)) r32: plus(ok(X1),ok(X2)) -> ok(plus(X1,X2)) r33: and(ok(X1),ok(X2)) -> ok(and(X1,X2)) r34: isNat(ok(X)) -> ok(isNat(X)) r35: top(mark(X)) -> top(proper(X)) r36: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: U21#_A(x1,x2,x3) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,0,1,1)) x2 + ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x3 mark_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) ok_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36 We remove them from the problem. Then no dependency pair remains.