YES

We show the termination of the TRS R:

  a__f(|0|()) -> cons(|0|(),f(s(|0|())))
  a__f(s(|0|())) -> a__f(a__p(s(|0|())))
  a__p(s(X)) -> mark(X)
  mark(f(X)) -> a__f(mark(X))
  mark(p(X)) -> a__p(mark(X))
  mark(|0|()) -> |0|()
  mark(cons(X1,X2)) -> cons(mark(X1),X2)
  mark(s(X)) -> s(mark(X))
  a__f(X) -> f(X)
  a__p(X) -> p(X)

-- SCC decomposition.

Consider the dependency pair problem (P, R), where P consists of

p1: a__f#(s(|0|())) -> a__f#(a__p(s(|0|())))
p2: a__f#(s(|0|())) -> a__p#(s(|0|()))
p3: a__p#(s(X)) -> mark#(X)
p4: mark#(f(X)) -> a__f#(mark(X))
p5: mark#(f(X)) -> mark#(X)
p6: mark#(p(X)) -> a__p#(mark(X))
p7: mark#(p(X)) -> mark#(X)
p8: mark#(cons(X1,X2)) -> mark#(X1)
p9: mark#(s(X)) -> mark#(X)

and R consists of:

r1: a__f(|0|()) -> cons(|0|(),f(s(|0|())))
r2: a__f(s(|0|())) -> a__f(a__p(s(|0|())))
r3: a__p(s(X)) -> mark(X)
r4: mark(f(X)) -> a__f(mark(X))
r5: mark(p(X)) -> a__p(mark(X))
r6: mark(|0|()) -> |0|()
r7: mark(cons(X1,X2)) -> cons(mark(X1),X2)
r8: mark(s(X)) -> s(mark(X))
r9: a__f(X) -> f(X)
r10: a__p(X) -> p(X)

The estimated dependency graph contains the following SCCs:

  {p1, p2, p3, p4, p5, p6, p7, p8, p9}


-- Reduction pair.

Consider the dependency pair problem (P, R), where P consists of

p1: a__f#(s(|0|())) -> a__f#(a__p(s(|0|())))
p2: a__f#(s(|0|())) -> a__p#(s(|0|()))
p3: a__p#(s(X)) -> mark#(X)
p4: mark#(s(X)) -> mark#(X)
p5: mark#(cons(X1,X2)) -> mark#(X1)
p6: mark#(p(X)) -> mark#(X)
p7: mark#(p(X)) -> a__p#(mark(X))
p8: mark#(f(X)) -> mark#(X)
p9: mark#(f(X)) -> a__f#(mark(X))

and R consists of:

r1: a__f(|0|()) -> cons(|0|(),f(s(|0|())))
r2: a__f(s(|0|())) -> a__f(a__p(s(|0|())))
r3: a__p(s(X)) -> mark(X)
r4: mark(f(X)) -> a__f(mark(X))
r5: mark(p(X)) -> a__p(mark(X))
r6: mark(|0|()) -> |0|()
r7: mark(cons(X1,X2)) -> cons(mark(X1),X2)
r8: mark(s(X)) -> s(mark(X))
r9: a__f(X) -> f(X)
r10: a__p(X) -> p(X)

The set of usable rules consists of

  r1, r2, r3, r4, r5, r6, r7, r8, r9, r10

Take the reduction pair:

  matrix interpretations:
  
    carrier: N^4
    order: lexicographic order
    interpretations:
      a__f#_A(x1) = ((0,0,0,0),(0,0,0,0),(0,0,0,0),(1,0,0,0)) x1 + (2,0,0,1)
      s_A(x1) = ((1,0,0,0),(1,1,0,0),(0,0,0,0),(0,0,0,0)) x1 + (0,0,1,0)
      |0|_A() = (1,0,1,1)
      a__p_A(x1) = ((1,0,0,0),(1,1,0,0),(0,0,1,0),(0,0,0,1)) x1 + (0,2,1,1)
      a__p#_A(x1) = ((1,0,0,0),(1,1,0,0),(0,1,0,0),(1,0,0,0)) x1 + (0,2,2,2)
      mark#_A(x1) = ((1,0,0,0),(0,1,0,0),(0,1,0,0),(0,0,0,0)) x1 + (0,1,1,0)
      cons_A(x1,x2) = ((1,0,0,0),(0,0,0,0),(1,1,0,0),(0,0,0,0)) x1 + ((0,0,0,0),(1,0,0,0),(0,1,0,0),(0,1,1,0)) x2 + (1,1,2,1)
      p_A(x1) = ((1,0,0,0),(1,1,0,0),(0,0,1,0),(0,0,0,1)) x1 + (0,2,1,1)
      mark_A(x1) = x1 + (0,0,2,1)
      f_A(x1) = x1 + (3,0,1,2)
      a__f_A(x1) = x1 + (3,0,2,3)

The next rules are strictly ordered:

  p2, p3, p5, p6, p7, p8, p9

We remove them from the problem.

-- SCC decomposition.

Consider the dependency pair problem (P, R), where P consists of

p1: a__f#(s(|0|())) -> a__f#(a__p(s(|0|())))
p2: mark#(s(X)) -> mark#(X)

and R consists of:

r1: a__f(|0|()) -> cons(|0|(),f(s(|0|())))
r2: a__f(s(|0|())) -> a__f(a__p(s(|0|())))
r3: a__p(s(X)) -> mark(X)
r4: mark(f(X)) -> a__f(mark(X))
r5: mark(p(X)) -> a__p(mark(X))
r6: mark(|0|()) -> |0|()
r7: mark(cons(X1,X2)) -> cons(mark(X1),X2)
r8: mark(s(X)) -> s(mark(X))
r9: a__f(X) -> f(X)
r10: a__p(X) -> p(X)

The estimated dependency graph contains the following SCCs:

  {p1}
  {p2}


-- Reduction pair.

Consider the dependency pair problem (P, R), where P consists of

p1: a__f#(s(|0|())) -> a__f#(a__p(s(|0|())))

and R consists of:

r1: a__f(|0|()) -> cons(|0|(),f(s(|0|())))
r2: a__f(s(|0|())) -> a__f(a__p(s(|0|())))
r3: a__p(s(X)) -> mark(X)
r4: mark(f(X)) -> a__f(mark(X))
r5: mark(p(X)) -> a__p(mark(X))
r6: mark(|0|()) -> |0|()
r7: mark(cons(X1,X2)) -> cons(mark(X1),X2)
r8: mark(s(X)) -> s(mark(X))
r9: a__f(X) -> f(X)
r10: a__p(X) -> p(X)

The set of usable rules consists of

  r1, r2, r3, r4, r5, r6, r7, r8, r9, r10

Take the reduction pair:

  matrix interpretations:
  
    carrier: N^4
    order: lexicographic order
    interpretations:
      a__f#_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,0,0),(0,0,1,0)) x1
      s_A(x1) = ((1,0,0,0),(1,1,0,0),(1,0,0,0),(0,0,0,0)) x1 + (2,3,3,1)
      |0|_A() = (2,1,1,0)
      a__p_A(x1) = ((1,0,0,0),(0,0,0,0),(1,0,0,0),(1,0,0,0)) x1 + (0,5,0,1)
      a__f_A(x1) = ((1,0,0,0),(0,0,0,0),(0,0,0,0),(0,1,0,0)) x1 + (1,5,3,1)
      cons_A(x1,x2) = ((0,0,0,0),(0,0,0,0),(1,0,0,0),(1,0,0,0)) x1 + ((0,0,0,0),(1,0,0,0),(0,0,0,0),(1,0,0,0)) x2 + (2,0,2,0)
      f_A(x1) = x1 + (1,0,1,0)
      mark_A(x1) = ((1,0,0,0),(1,1,0,0),(1,0,1,0),(0,0,0,0)) x1 + (1,5,0,0)
      p_A(x1) = ((1,0,0,0),(0,0,0,0),(0,1,0,0),(0,0,0,0)) x1 + (0,1,2,0)

The next rules are strictly ordered:

  p1

We remove them from the problem.  Then no dependency pair remains.

-- Reduction pair.

Consider the dependency pair problem (P, R), where P consists of

p1: mark#(s(X)) -> mark#(X)

and R consists of:

r1: a__f(|0|()) -> cons(|0|(),f(s(|0|())))
r2: a__f(s(|0|())) -> a__f(a__p(s(|0|())))
r3: a__p(s(X)) -> mark(X)
r4: mark(f(X)) -> a__f(mark(X))
r5: mark(p(X)) -> a__p(mark(X))
r6: mark(|0|()) -> |0|()
r7: mark(cons(X1,X2)) -> cons(mark(X1),X2)
r8: mark(s(X)) -> s(mark(X))
r9: a__f(X) -> f(X)
r10: a__p(X) -> p(X)

The set of usable rules consists of

  (no rules)

Take the reduction pair:

  matrix interpretations:
  
    carrier: N^4
    order: lexicographic order
    interpretations:
      mark#_A(x1) = ((1,0,0,0),(0,1,0,0),(0,0,1,0),(0,1,1,1)) x1
      s_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,0)) x1 + (1,0,0,1)

The next rules are strictly ordered:

  p1

We remove them from the problem.  Then no dependency pair remains.