YES We show the termination of the TRS R: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) active(nats(N)) -> mark(cons(N,nats(s(N)))) active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) active(filter(X1,X2,X3)) -> filter(active(X1),X2,X3) active(filter(X1,X2,X3)) -> filter(X1,active(X2),X3) active(filter(X1,X2,X3)) -> filter(X1,X2,active(X3)) active(cons(X1,X2)) -> cons(active(X1),X2) active(s(X)) -> s(active(X)) active(sieve(X)) -> sieve(active(X)) active(nats(X)) -> nats(active(X)) filter(mark(X1),X2,X3) -> mark(filter(X1,X2,X3)) filter(X1,mark(X2),X3) -> mark(filter(X1,X2,X3)) filter(X1,X2,mark(X3)) -> mark(filter(X1,X2,X3)) cons(mark(X1),X2) -> mark(cons(X1,X2)) s(mark(X)) -> mark(s(X)) sieve(mark(X)) -> mark(sieve(X)) nats(mark(X)) -> mark(nats(X)) proper(filter(X1,X2,X3)) -> filter(proper(X1),proper(X2),proper(X3)) proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) proper(|0|()) -> ok(|0|()) proper(s(X)) -> s(proper(X)) proper(sieve(X)) -> sieve(proper(X)) proper(nats(X)) -> nats(proper(X)) proper(zprimes()) -> ok(zprimes()) filter(ok(X1),ok(X2),ok(X3)) -> ok(filter(X1,X2,X3)) cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) s(ok(X)) -> ok(s(X)) sieve(ok(X)) -> ok(sieve(X)) nats(ok(X)) -> ok(nats(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(filter(cons(X,Y),|0|(),M)) -> cons#(|0|(),filter(Y,M,M)) p2: active#(filter(cons(X,Y),|0|(),M)) -> filter#(Y,M,M) p3: active#(filter(cons(X,Y),s(N),M)) -> cons#(X,filter(Y,N,M)) p4: active#(filter(cons(X,Y),s(N),M)) -> filter#(Y,N,M) p5: active#(sieve(cons(|0|(),Y))) -> cons#(|0|(),sieve(Y)) p6: active#(sieve(cons(|0|(),Y))) -> sieve#(Y) p7: active#(sieve(cons(s(N),Y))) -> cons#(s(N),sieve(filter(Y,N,N))) p8: active#(sieve(cons(s(N),Y))) -> sieve#(filter(Y,N,N)) p9: active#(sieve(cons(s(N),Y))) -> filter#(Y,N,N) p10: active#(nats(N)) -> cons#(N,nats(s(N))) p11: active#(nats(N)) -> nats#(s(N)) p12: active#(nats(N)) -> s#(N) p13: active#(zprimes()) -> sieve#(nats(s(s(|0|())))) p14: active#(zprimes()) -> nats#(s(s(|0|()))) p15: active#(zprimes()) -> s#(s(|0|())) p16: active#(zprimes()) -> s#(|0|()) p17: active#(filter(X1,X2,X3)) -> filter#(active(X1),X2,X3) p18: active#(filter(X1,X2,X3)) -> active#(X1) p19: active#(filter(X1,X2,X3)) -> filter#(X1,active(X2),X3) p20: active#(filter(X1,X2,X3)) -> active#(X2) p21: active#(filter(X1,X2,X3)) -> filter#(X1,X2,active(X3)) p22: active#(filter(X1,X2,X3)) -> active#(X3) p23: active#(cons(X1,X2)) -> cons#(active(X1),X2) p24: active#(cons(X1,X2)) -> active#(X1) p25: active#(s(X)) -> s#(active(X)) p26: active#(s(X)) -> active#(X) p27: active#(sieve(X)) -> sieve#(active(X)) p28: active#(sieve(X)) -> active#(X) p29: active#(nats(X)) -> nats#(active(X)) p30: active#(nats(X)) -> active#(X) p31: filter#(mark(X1),X2,X3) -> filter#(X1,X2,X3) p32: filter#(X1,mark(X2),X3) -> filter#(X1,X2,X3) p33: filter#(X1,X2,mark(X3)) -> filter#(X1,X2,X3) p34: cons#(mark(X1),X2) -> cons#(X1,X2) p35: s#(mark(X)) -> s#(X) p36: sieve#(mark(X)) -> sieve#(X) p37: nats#(mark(X)) -> nats#(X) p38: proper#(filter(X1,X2,X3)) -> filter#(proper(X1),proper(X2),proper(X3)) p39: proper#(filter(X1,X2,X3)) -> proper#(X1) p40: proper#(filter(X1,X2,X3)) -> proper#(X2) p41: proper#(filter(X1,X2,X3)) -> proper#(X3) p42: proper#(cons(X1,X2)) -> cons#(proper(X1),proper(X2)) p43: proper#(cons(X1,X2)) -> proper#(X1) p44: proper#(cons(X1,X2)) -> proper#(X2) p45: proper#(s(X)) -> s#(proper(X)) p46: proper#(s(X)) -> proper#(X) p47: proper#(sieve(X)) -> sieve#(proper(X)) p48: proper#(sieve(X)) -> proper#(X) p49: proper#(nats(X)) -> nats#(proper(X)) p50: proper#(nats(X)) -> proper#(X) p51: filter#(ok(X1),ok(X2),ok(X3)) -> filter#(X1,X2,X3) p52: cons#(ok(X1),ok(X2)) -> cons#(X1,X2) p53: s#(ok(X)) -> s#(X) p54: sieve#(ok(X)) -> sieve#(X) p55: nats#(ok(X)) -> nats#(X) p56: top#(mark(X)) -> top#(proper(X)) p57: top#(mark(X)) -> proper#(X) p58: top#(ok(X)) -> top#(active(X)) p59: top#(ok(X)) -> active#(X) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: active(filter(X1,X2,X3)) -> filter(active(X1),X2,X3) r8: active(filter(X1,X2,X3)) -> filter(X1,active(X2),X3) r9: active(filter(X1,X2,X3)) -> filter(X1,X2,active(X3)) r10: active(cons(X1,X2)) -> cons(active(X1),X2) r11: active(s(X)) -> s(active(X)) r12: active(sieve(X)) -> sieve(active(X)) r13: active(nats(X)) -> nats(active(X)) r14: filter(mark(X1),X2,X3) -> mark(filter(X1,X2,X3)) r15: filter(X1,mark(X2),X3) -> mark(filter(X1,X2,X3)) r16: filter(X1,X2,mark(X3)) -> mark(filter(X1,X2,X3)) r17: cons(mark(X1),X2) -> mark(cons(X1,X2)) r18: s(mark(X)) -> mark(s(X)) r19: sieve(mark(X)) -> mark(sieve(X)) r20: nats(mark(X)) -> mark(nats(X)) r21: proper(filter(X1,X2,X3)) -> filter(proper(X1),proper(X2),proper(X3)) r22: proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) r23: proper(|0|()) -> ok(|0|()) r24: proper(s(X)) -> s(proper(X)) r25: proper(sieve(X)) -> sieve(proper(X)) r26: proper(nats(X)) -> nats(proper(X)) r27: proper(zprimes()) -> ok(zprimes()) r28: filter(ok(X1),ok(X2),ok(X3)) -> ok(filter(X1,X2,X3)) r29: cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) r30: s(ok(X)) -> ok(s(X)) r31: sieve(ok(X)) -> ok(sieve(X)) r32: nats(ok(X)) -> ok(nats(X)) r33: top(mark(X)) -> top(proper(X)) r34: top(ok(X)) -> top(active(X)) The estimated dependency graph contains the following SCCs: {p56, p58} {p18, p20, p22, p24, p26, p28, p30} {p39, p40, p41, p43, p44, p46, p48, p50} {p31, p32, p33, p51} {p34, p52} {p36, p54} {p37, p55} {p35, p53} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: top#(ok(X)) -> top#(active(X)) p2: top#(mark(X)) -> top#(proper(X)) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: active(filter(X1,X2,X3)) -> filter(active(X1),X2,X3) r8: active(filter(X1,X2,X3)) -> filter(X1,active(X2),X3) r9: active(filter(X1,X2,X3)) -> filter(X1,X2,active(X3)) r10: active(cons(X1,X2)) -> cons(active(X1),X2) r11: active(s(X)) -> s(active(X)) r12: active(sieve(X)) -> sieve(active(X)) r13: active(nats(X)) -> nats(active(X)) r14: filter(mark(X1),X2,X3) -> mark(filter(X1,X2,X3)) r15: filter(X1,mark(X2),X3) -> mark(filter(X1,X2,X3)) r16: filter(X1,X2,mark(X3)) -> mark(filter(X1,X2,X3)) r17: cons(mark(X1),X2) -> mark(cons(X1,X2)) r18: s(mark(X)) -> mark(s(X)) r19: sieve(mark(X)) -> mark(sieve(X)) r20: nats(mark(X)) -> mark(nats(X)) r21: proper(filter(X1,X2,X3)) -> filter(proper(X1),proper(X2),proper(X3)) r22: proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) r23: proper(|0|()) -> ok(|0|()) r24: proper(s(X)) -> s(proper(X)) r25: proper(sieve(X)) -> sieve(proper(X)) r26: proper(nats(X)) -> nats(proper(X)) r27: proper(zprimes()) -> ok(zprimes()) r28: filter(ok(X1),ok(X2),ok(X3)) -> ok(filter(X1,X2,X3)) r29: cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) r30: s(ok(X)) -> ok(s(X)) r31: sieve(ok(X)) -> ok(sieve(X)) r32: nats(ok(X)) -> ok(nats(X)) r33: top(mark(X)) -> top(proper(X)) r34: top(ok(X)) -> top(active(X)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32 Take the reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: top#_A(x1) = ((0,0,0,0),(0,0,0,0),(0,0,0,0),(1,0,0,0)) x1 ok_A(x1) = x1 + (0,0,5,0) active_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(0,1,0,0)) x1 + (0,9,0,1) mark_A(x1) = ((1,0,0,0),(0,0,0,0),(1,0,0,0),(0,0,0,0)) x1 + (10,1,8,7) proper_A(x1) = ((1,0,0,0),(0,1,0,0),(1,0,1,0),(0,1,1,0)) x1 + (0,2,0,1) filter_A(x1,x2,x3) = x1 + ((1,0,0,0),(1,0,0,0),(0,0,0,0),(0,0,0,0)) x2 + ((1,0,0,0),(1,1,0,0),(1,0,1,0),(0,0,1,0)) x3 + (11,2,20,0) cons_A(x1,x2) = ((1,0,0,0),(0,0,0,0),(1,0,0,0),(1,0,0,0)) x1 + ((0,0,0,0),(0,0,0,0),(0,0,0,0),(1,0,0,0)) x2 + (1,1,0,3) s_A(x1) = ((1,0,0,0),(1,0,0,0),(1,1,0,0),(1,0,1,0)) x1 + (3,7,0,0) sieve_A(x1) = x1 + (11,8,11,8) nats_A(x1) = ((1,0,0,0),(0,0,0,0),(1,1,0,0),(0,1,1,0)) x1 + (12,7,10,0) |0|_A() = (5,1,0,1) zprimes_A() = (45,1,1,0) The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: top#(ok(X)) -> top#(active(X)) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: active(filter(X1,X2,X3)) -> filter(active(X1),X2,X3) r8: active(filter(X1,X2,X3)) -> filter(X1,active(X2),X3) r9: active(filter(X1,X2,X3)) -> filter(X1,X2,active(X3)) r10: active(cons(X1,X2)) -> cons(active(X1),X2) r11: active(s(X)) -> s(active(X)) r12: active(sieve(X)) -> sieve(active(X)) r13: active(nats(X)) -> nats(active(X)) r14: filter(mark(X1),X2,X3) -> mark(filter(X1,X2,X3)) r15: filter(X1,mark(X2),X3) -> mark(filter(X1,X2,X3)) r16: filter(X1,X2,mark(X3)) -> mark(filter(X1,X2,X3)) r17: cons(mark(X1),X2) -> mark(cons(X1,X2)) r18: s(mark(X)) -> mark(s(X)) r19: sieve(mark(X)) -> mark(sieve(X)) r20: nats(mark(X)) -> mark(nats(X)) r21: proper(filter(X1,X2,X3)) -> filter(proper(X1),proper(X2),proper(X3)) r22: proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) r23: proper(|0|()) -> ok(|0|()) r24: proper(s(X)) -> s(proper(X)) r25: proper(sieve(X)) -> sieve(proper(X)) r26: proper(nats(X)) -> nats(proper(X)) r27: proper(zprimes()) -> ok(zprimes()) r28: filter(ok(X1),ok(X2),ok(X3)) -> ok(filter(X1,X2,X3)) r29: cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) r30: s(ok(X)) -> ok(s(X)) r31: sieve(ok(X)) -> ok(sieve(X)) r32: nats(ok(X)) -> ok(nats(X)) r33: top(mark(X)) -> top(proper(X)) r34: top(ok(X)) -> top(active(X)) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: top#(ok(X)) -> top#(active(X)) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: active(filter(X1,X2,X3)) -> filter(active(X1),X2,X3) r8: active(filter(X1,X2,X3)) -> filter(X1,active(X2),X3) r9: active(filter(X1,X2,X3)) -> filter(X1,X2,active(X3)) r10: active(cons(X1,X2)) -> cons(active(X1),X2) r11: active(s(X)) -> s(active(X)) r12: active(sieve(X)) -> sieve(active(X)) r13: active(nats(X)) -> nats(active(X)) r14: filter(mark(X1),X2,X3) -> mark(filter(X1,X2,X3)) r15: filter(X1,mark(X2),X3) -> mark(filter(X1,X2,X3)) r16: filter(X1,X2,mark(X3)) -> mark(filter(X1,X2,X3)) r17: cons(mark(X1),X2) -> mark(cons(X1,X2)) r18: s(mark(X)) -> mark(s(X)) r19: sieve(mark(X)) -> mark(sieve(X)) r20: nats(mark(X)) -> mark(nats(X)) r21: proper(filter(X1,X2,X3)) -> filter(proper(X1),proper(X2),proper(X3)) r22: proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) r23: proper(|0|()) -> ok(|0|()) r24: proper(s(X)) -> s(proper(X)) r25: proper(sieve(X)) -> sieve(proper(X)) r26: proper(nats(X)) -> nats(proper(X)) r27: proper(zprimes()) -> ok(zprimes()) r28: filter(ok(X1),ok(X2),ok(X3)) -> ok(filter(X1,X2,X3)) r29: cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) r30: s(ok(X)) -> ok(s(X)) r31: sieve(ok(X)) -> ok(sieve(X)) r32: nats(ok(X)) -> ok(nats(X)) r33: top(mark(X)) -> top(proper(X)) r34: top(ok(X)) -> top(active(X)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r28, r29, r30, r31, r32 Take the reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: top#_A(x1) = ((0,0,0,0),(1,0,0,0),(1,0,0,0),(0,1,0,0)) x1 ok_A(x1) = ((1,0,0,0),(1,0,0,0),(0,0,0,0),(1,1,0,0)) x1 + (9,6,8,23) active_A(x1) = ((1,0,0,0),(1,0,0,0),(0,1,0,0),(0,0,0,0)) x1 + (1,5,13,25) filter_A(x1,x2,x3) = ((1,0,0,0),(1,0,0,0),(0,1,0,0),(0,1,1,0)) x1 + ((1,0,0,0),(1,0,0,0),(1,1,0,0),(0,0,1,0)) x2 + ((0,0,0,0),(0,0,0,0),(1,0,0,0),(0,0,0,0)) x3 + (13,0,18,13) mark_A(x1) = ((0,0,0,0),(1,0,0,0),(1,1,0,0),(1,1,0,0)) x1 + (4,6,10,1) cons_A(x1,x2) = x1 + ((1,0,0,0),(0,0,0,0),(0,1,0,0),(0,0,0,0)) x2 + (16,7,1,26) s_A(x1) = ((1,0,0,0),(1,0,0,0),(0,0,0,0),(0,0,0,0)) x1 + (2,0,9,4) sieve_A(x1) = ((1,0,0,0),(1,0,0,0),(0,0,0,0),(0,0,0,0)) x1 + (1,4,16,1) nats_A(x1) = ((1,0,0,0),(1,0,0,0),(0,0,0,0),(0,0,0,0)) x1 + (4,2,1,1) |0|_A() = (1,1,1,1) zprimes_A() = (4,21,1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(nats(X)) -> active#(X) p2: active#(sieve(X)) -> active#(X) p3: active#(s(X)) -> active#(X) p4: active#(cons(X1,X2)) -> active#(X1) p5: active#(filter(X1,X2,X3)) -> active#(X3) p6: active#(filter(X1,X2,X3)) -> active#(X2) p7: active#(filter(X1,X2,X3)) -> active#(X1) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: active(filter(X1,X2,X3)) -> filter(active(X1),X2,X3) r8: active(filter(X1,X2,X3)) -> filter(X1,active(X2),X3) r9: active(filter(X1,X2,X3)) -> filter(X1,X2,active(X3)) r10: active(cons(X1,X2)) -> cons(active(X1),X2) r11: active(s(X)) -> s(active(X)) r12: active(sieve(X)) -> sieve(active(X)) r13: active(nats(X)) -> nats(active(X)) r14: filter(mark(X1),X2,X3) -> mark(filter(X1,X2,X3)) r15: filter(X1,mark(X2),X3) -> mark(filter(X1,X2,X3)) r16: filter(X1,X2,mark(X3)) -> mark(filter(X1,X2,X3)) r17: cons(mark(X1),X2) -> mark(cons(X1,X2)) r18: s(mark(X)) -> mark(s(X)) r19: sieve(mark(X)) -> mark(sieve(X)) r20: nats(mark(X)) -> mark(nats(X)) r21: proper(filter(X1,X2,X3)) -> filter(proper(X1),proper(X2),proper(X3)) r22: proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) r23: proper(|0|()) -> ok(|0|()) r24: proper(s(X)) -> s(proper(X)) r25: proper(sieve(X)) -> sieve(proper(X)) r26: proper(nats(X)) -> nats(proper(X)) r27: proper(zprimes()) -> ok(zprimes()) r28: filter(ok(X1),ok(X2),ok(X3)) -> ok(filter(X1,X2,X3)) r29: cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) r30: s(ok(X)) -> ok(s(X)) r31: sieve(ok(X)) -> ok(sieve(X)) r32: nats(ok(X)) -> ok(nats(X)) r33: top(mark(X)) -> top(proper(X)) r34: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: active#_A(x1) = ((1,0,0,0),(0,1,0,0),(1,1,0,0),(1,1,1,0)) x1 nats_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) sieve_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) s_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) cons_A(x1,x2) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x2 + (1,1,1,1) filter_A(x1,x2,x3) = ((1,0,0,0),(1,1,0,0),(1,1,0,0),(1,1,1,0)) x1 + ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x2 + ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x3 + (1,1,1,1) The next rules are strictly ordered: p1, p2, p3, p4, p5, p6, p7 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: proper#(nats(X)) -> proper#(X) p2: proper#(sieve(X)) -> proper#(X) p3: proper#(s(X)) -> proper#(X) p4: proper#(cons(X1,X2)) -> proper#(X2) p5: proper#(cons(X1,X2)) -> proper#(X1) p6: proper#(filter(X1,X2,X3)) -> proper#(X3) p7: proper#(filter(X1,X2,X3)) -> proper#(X2) p8: proper#(filter(X1,X2,X3)) -> proper#(X1) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: active(filter(X1,X2,X3)) -> filter(active(X1),X2,X3) r8: active(filter(X1,X2,X3)) -> filter(X1,active(X2),X3) r9: active(filter(X1,X2,X3)) -> filter(X1,X2,active(X3)) r10: active(cons(X1,X2)) -> cons(active(X1),X2) r11: active(s(X)) -> s(active(X)) r12: active(sieve(X)) -> sieve(active(X)) r13: active(nats(X)) -> nats(active(X)) r14: filter(mark(X1),X2,X3) -> mark(filter(X1,X2,X3)) r15: filter(X1,mark(X2),X3) -> mark(filter(X1,X2,X3)) r16: filter(X1,X2,mark(X3)) -> mark(filter(X1,X2,X3)) r17: cons(mark(X1),X2) -> mark(cons(X1,X2)) r18: s(mark(X)) -> mark(s(X)) r19: sieve(mark(X)) -> mark(sieve(X)) r20: nats(mark(X)) -> mark(nats(X)) r21: proper(filter(X1,X2,X3)) -> filter(proper(X1),proper(X2),proper(X3)) r22: proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) r23: proper(|0|()) -> ok(|0|()) r24: proper(s(X)) -> s(proper(X)) r25: proper(sieve(X)) -> sieve(proper(X)) r26: proper(nats(X)) -> nats(proper(X)) r27: proper(zprimes()) -> ok(zprimes()) r28: filter(ok(X1),ok(X2),ok(X3)) -> ok(filter(X1,X2,X3)) r29: cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) r30: s(ok(X)) -> ok(s(X)) r31: sieve(ok(X)) -> ok(sieve(X)) r32: nats(ok(X)) -> ok(nats(X)) r33: top(mark(X)) -> top(proper(X)) r34: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: proper#_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 nats_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) sieve_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) s_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) cons_A(x1,x2) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x2 + (1,1,1,1) filter_A(x1,x2,x3) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x2 + ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x3 + (1,1,1,1) The next rules are strictly ordered: p1, p2, p3, p4, p5, p6, p7, p8 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: filter#(mark(X1),X2,X3) -> filter#(X1,X2,X3) p2: filter#(ok(X1),ok(X2),ok(X3)) -> filter#(X1,X2,X3) p3: filter#(X1,X2,mark(X3)) -> filter#(X1,X2,X3) p4: filter#(X1,mark(X2),X3) -> filter#(X1,X2,X3) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: active(filter(X1,X2,X3)) -> filter(active(X1),X2,X3) r8: active(filter(X1,X2,X3)) -> filter(X1,active(X2),X3) r9: active(filter(X1,X2,X3)) -> filter(X1,X2,active(X3)) r10: active(cons(X1,X2)) -> cons(active(X1),X2) r11: active(s(X)) -> s(active(X)) r12: active(sieve(X)) -> sieve(active(X)) r13: active(nats(X)) -> nats(active(X)) r14: filter(mark(X1),X2,X3) -> mark(filter(X1,X2,X3)) r15: filter(X1,mark(X2),X3) -> mark(filter(X1,X2,X3)) r16: filter(X1,X2,mark(X3)) -> mark(filter(X1,X2,X3)) r17: cons(mark(X1),X2) -> mark(cons(X1,X2)) r18: s(mark(X)) -> mark(s(X)) r19: sieve(mark(X)) -> mark(sieve(X)) r20: nats(mark(X)) -> mark(nats(X)) r21: proper(filter(X1,X2,X3)) -> filter(proper(X1),proper(X2),proper(X3)) r22: proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) r23: proper(|0|()) -> ok(|0|()) r24: proper(s(X)) -> s(proper(X)) r25: proper(sieve(X)) -> sieve(proper(X)) r26: proper(nats(X)) -> nats(proper(X)) r27: proper(zprimes()) -> ok(zprimes()) r28: filter(ok(X1),ok(X2),ok(X3)) -> ok(filter(X1,X2,X3)) r29: cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) r30: s(ok(X)) -> ok(s(X)) r31: sieve(ok(X)) -> ok(sieve(X)) r32: nats(ok(X)) -> ok(nats(X)) r33: top(mark(X)) -> top(proper(X)) r34: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: filter#_A(x1,x2,x3) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(0,0,1,0)) x1 + ((1,0,0,0),(1,1,0,0),(1,1,1,0),(0,0,0,0)) x2 + ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x3 mark_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) ok_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) The next rules are strictly ordered: p1, p2, p3, p4 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: cons#(mark(X1),X2) -> cons#(X1,X2) p2: cons#(ok(X1),ok(X2)) -> cons#(X1,X2) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: active(filter(X1,X2,X3)) -> filter(active(X1),X2,X3) r8: active(filter(X1,X2,X3)) -> filter(X1,active(X2),X3) r9: active(filter(X1,X2,X3)) -> filter(X1,X2,active(X3)) r10: active(cons(X1,X2)) -> cons(active(X1),X2) r11: active(s(X)) -> s(active(X)) r12: active(sieve(X)) -> sieve(active(X)) r13: active(nats(X)) -> nats(active(X)) r14: filter(mark(X1),X2,X3) -> mark(filter(X1,X2,X3)) r15: filter(X1,mark(X2),X3) -> mark(filter(X1,X2,X3)) r16: filter(X1,X2,mark(X3)) -> mark(filter(X1,X2,X3)) r17: cons(mark(X1),X2) -> mark(cons(X1,X2)) r18: s(mark(X)) -> mark(s(X)) r19: sieve(mark(X)) -> mark(sieve(X)) r20: nats(mark(X)) -> mark(nats(X)) r21: proper(filter(X1,X2,X3)) -> filter(proper(X1),proper(X2),proper(X3)) r22: proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) r23: proper(|0|()) -> ok(|0|()) r24: proper(s(X)) -> s(proper(X)) r25: proper(sieve(X)) -> sieve(proper(X)) r26: proper(nats(X)) -> nats(proper(X)) r27: proper(zprimes()) -> ok(zprimes()) r28: filter(ok(X1),ok(X2),ok(X3)) -> ok(filter(X1,X2,X3)) r29: cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) r30: s(ok(X)) -> ok(s(X)) r31: sieve(ok(X)) -> ok(sieve(X)) r32: nats(ok(X)) -> ok(nats(X)) r33: top(mark(X)) -> top(proper(X)) r34: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: cons#_A(x1,x2) = ((1,0,0,0),(1,1,0,0),(1,1,0,0),(1,1,1,0)) x1 + ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x2 mark_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,0,0),(1,1,1,0)) x1 + (1,1,1,1) ok_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: sieve#(mark(X)) -> sieve#(X) p2: sieve#(ok(X)) -> sieve#(X) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: active(filter(X1,X2,X3)) -> filter(active(X1),X2,X3) r8: active(filter(X1,X2,X3)) -> filter(X1,active(X2),X3) r9: active(filter(X1,X2,X3)) -> filter(X1,X2,active(X3)) r10: active(cons(X1,X2)) -> cons(active(X1),X2) r11: active(s(X)) -> s(active(X)) r12: active(sieve(X)) -> sieve(active(X)) r13: active(nats(X)) -> nats(active(X)) r14: filter(mark(X1),X2,X3) -> mark(filter(X1,X2,X3)) r15: filter(X1,mark(X2),X3) -> mark(filter(X1,X2,X3)) r16: filter(X1,X2,mark(X3)) -> mark(filter(X1,X2,X3)) r17: cons(mark(X1),X2) -> mark(cons(X1,X2)) r18: s(mark(X)) -> mark(s(X)) r19: sieve(mark(X)) -> mark(sieve(X)) r20: nats(mark(X)) -> mark(nats(X)) r21: proper(filter(X1,X2,X3)) -> filter(proper(X1),proper(X2),proper(X3)) r22: proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) r23: proper(|0|()) -> ok(|0|()) r24: proper(s(X)) -> s(proper(X)) r25: proper(sieve(X)) -> sieve(proper(X)) r26: proper(nats(X)) -> nats(proper(X)) r27: proper(zprimes()) -> ok(zprimes()) r28: filter(ok(X1),ok(X2),ok(X3)) -> ok(filter(X1,X2,X3)) r29: cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) r30: s(ok(X)) -> ok(s(X)) r31: sieve(ok(X)) -> ok(sieve(X)) r32: nats(ok(X)) -> ok(nats(X)) r33: top(mark(X)) -> top(proper(X)) r34: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: sieve#_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 mark_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) ok_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: nats#(mark(X)) -> nats#(X) p2: nats#(ok(X)) -> nats#(X) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: active(filter(X1,X2,X3)) -> filter(active(X1),X2,X3) r8: active(filter(X1,X2,X3)) -> filter(X1,active(X2),X3) r9: active(filter(X1,X2,X3)) -> filter(X1,X2,active(X3)) r10: active(cons(X1,X2)) -> cons(active(X1),X2) r11: active(s(X)) -> s(active(X)) r12: active(sieve(X)) -> sieve(active(X)) r13: active(nats(X)) -> nats(active(X)) r14: filter(mark(X1),X2,X3) -> mark(filter(X1,X2,X3)) r15: filter(X1,mark(X2),X3) -> mark(filter(X1,X2,X3)) r16: filter(X1,X2,mark(X3)) -> mark(filter(X1,X2,X3)) r17: cons(mark(X1),X2) -> mark(cons(X1,X2)) r18: s(mark(X)) -> mark(s(X)) r19: sieve(mark(X)) -> mark(sieve(X)) r20: nats(mark(X)) -> mark(nats(X)) r21: proper(filter(X1,X2,X3)) -> filter(proper(X1),proper(X2),proper(X3)) r22: proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) r23: proper(|0|()) -> ok(|0|()) r24: proper(s(X)) -> s(proper(X)) r25: proper(sieve(X)) -> sieve(proper(X)) r26: proper(nats(X)) -> nats(proper(X)) r27: proper(zprimes()) -> ok(zprimes()) r28: filter(ok(X1),ok(X2),ok(X3)) -> ok(filter(X1,X2,X3)) r29: cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) r30: s(ok(X)) -> ok(s(X)) r31: sieve(ok(X)) -> ok(sieve(X)) r32: nats(ok(X)) -> ok(nats(X)) r33: top(mark(X)) -> top(proper(X)) r34: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: nats#_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 mark_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) ok_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: s#(mark(X)) -> s#(X) p2: s#(ok(X)) -> s#(X) and R consists of: r1: active(filter(cons(X,Y),|0|(),M)) -> mark(cons(|0|(),filter(Y,M,M))) r2: active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) r3: active(sieve(cons(|0|(),Y))) -> mark(cons(|0|(),sieve(Y))) r4: active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) r5: active(nats(N)) -> mark(cons(N,nats(s(N)))) r6: active(zprimes()) -> mark(sieve(nats(s(s(|0|()))))) r7: active(filter(X1,X2,X3)) -> filter(active(X1),X2,X3) r8: active(filter(X1,X2,X3)) -> filter(X1,active(X2),X3) r9: active(filter(X1,X2,X3)) -> filter(X1,X2,active(X3)) r10: active(cons(X1,X2)) -> cons(active(X1),X2) r11: active(s(X)) -> s(active(X)) r12: active(sieve(X)) -> sieve(active(X)) r13: active(nats(X)) -> nats(active(X)) r14: filter(mark(X1),X2,X3) -> mark(filter(X1,X2,X3)) r15: filter(X1,mark(X2),X3) -> mark(filter(X1,X2,X3)) r16: filter(X1,X2,mark(X3)) -> mark(filter(X1,X2,X3)) r17: cons(mark(X1),X2) -> mark(cons(X1,X2)) r18: s(mark(X)) -> mark(s(X)) r19: sieve(mark(X)) -> mark(sieve(X)) r20: nats(mark(X)) -> mark(nats(X)) r21: proper(filter(X1,X2,X3)) -> filter(proper(X1),proper(X2),proper(X3)) r22: proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) r23: proper(|0|()) -> ok(|0|()) r24: proper(s(X)) -> s(proper(X)) r25: proper(sieve(X)) -> sieve(proper(X)) r26: proper(nats(X)) -> nats(proper(X)) r27: proper(zprimes()) -> ok(zprimes()) r28: filter(ok(X1),ok(X2),ok(X3)) -> ok(filter(X1,X2,X3)) r29: cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) r30: s(ok(X)) -> ok(s(X)) r31: sieve(ok(X)) -> ok(sieve(X)) r32: nats(ok(X)) -> ok(nats(X)) r33: top(mark(X)) -> top(proper(X)) r34: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: s#_A(x1) = ((1,0,0,0),(0,1,0,0),(0,0,1,0),(0,1,1,1)) x1 mark_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) ok_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34 We remove them from the problem. Then no dependency pair remains.