YES We show the termination of the TRS R: active(f(f(X))) -> mark(c(f(g(f(X))))) active(c(X)) -> mark(d(X)) active(h(X)) -> mark(c(d(X))) active(f(X)) -> f(active(X)) active(h(X)) -> h(active(X)) f(mark(X)) -> mark(f(X)) h(mark(X)) -> mark(h(X)) proper(f(X)) -> f(proper(X)) proper(c(X)) -> c(proper(X)) proper(g(X)) -> g(proper(X)) proper(d(X)) -> d(proper(X)) proper(h(X)) -> h(proper(X)) f(ok(X)) -> ok(f(X)) c(ok(X)) -> ok(c(X)) g(ok(X)) -> ok(g(X)) d(ok(X)) -> ok(d(X)) h(ok(X)) -> ok(h(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(f(f(X))) -> c#(f(g(f(X)))) p2: active#(f(f(X))) -> f#(g(f(X))) p3: active#(f(f(X))) -> g#(f(X)) p4: active#(c(X)) -> d#(X) p5: active#(h(X)) -> c#(d(X)) p6: active#(h(X)) -> d#(X) p7: active#(f(X)) -> f#(active(X)) p8: active#(f(X)) -> active#(X) p9: active#(h(X)) -> h#(active(X)) p10: active#(h(X)) -> active#(X) p11: f#(mark(X)) -> f#(X) p12: h#(mark(X)) -> h#(X) p13: proper#(f(X)) -> f#(proper(X)) p14: proper#(f(X)) -> proper#(X) p15: proper#(c(X)) -> c#(proper(X)) p16: proper#(c(X)) -> proper#(X) p17: proper#(g(X)) -> g#(proper(X)) p18: proper#(g(X)) -> proper#(X) p19: proper#(d(X)) -> d#(proper(X)) p20: proper#(d(X)) -> proper#(X) p21: proper#(h(X)) -> h#(proper(X)) p22: proper#(h(X)) -> proper#(X) p23: f#(ok(X)) -> f#(X) p24: c#(ok(X)) -> c#(X) p25: g#(ok(X)) -> g#(X) p26: d#(ok(X)) -> d#(X) p27: h#(ok(X)) -> h#(X) p28: top#(mark(X)) -> top#(proper(X)) p29: top#(mark(X)) -> proper#(X) p30: top#(ok(X)) -> top#(active(X)) p31: top#(ok(X)) -> active#(X) and R consists of: r1: active(f(f(X))) -> mark(c(f(g(f(X))))) r2: active(c(X)) -> mark(d(X)) r3: active(h(X)) -> mark(c(d(X))) r4: active(f(X)) -> f(active(X)) r5: active(h(X)) -> h(active(X)) r6: f(mark(X)) -> mark(f(X)) r7: h(mark(X)) -> mark(h(X)) r8: proper(f(X)) -> f(proper(X)) r9: proper(c(X)) -> c(proper(X)) r10: proper(g(X)) -> g(proper(X)) r11: proper(d(X)) -> d(proper(X)) r12: proper(h(X)) -> h(proper(X)) r13: f(ok(X)) -> ok(f(X)) r14: c(ok(X)) -> ok(c(X)) r15: g(ok(X)) -> ok(g(X)) r16: d(ok(X)) -> ok(d(X)) r17: h(ok(X)) -> ok(h(X)) r18: top(mark(X)) -> top(proper(X)) r19: top(ok(X)) -> top(active(X)) The estimated dependency graph contains the following SCCs: {p28, p30} {p8, p10} {p14, p16, p18, p20, p22} {p24} {p11, p23} {p25} {p26} {p12, p27} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: top#(ok(X)) -> top#(active(X)) p2: top#(mark(X)) -> top#(proper(X)) and R consists of: r1: active(f(f(X))) -> mark(c(f(g(f(X))))) r2: active(c(X)) -> mark(d(X)) r3: active(h(X)) -> mark(c(d(X))) r4: active(f(X)) -> f(active(X)) r5: active(h(X)) -> h(active(X)) r6: f(mark(X)) -> mark(f(X)) r7: h(mark(X)) -> mark(h(X)) r8: proper(f(X)) -> f(proper(X)) r9: proper(c(X)) -> c(proper(X)) r10: proper(g(X)) -> g(proper(X)) r11: proper(d(X)) -> d(proper(X)) r12: proper(h(X)) -> h(proper(X)) r13: f(ok(X)) -> ok(f(X)) r14: c(ok(X)) -> ok(c(X)) r15: g(ok(X)) -> ok(g(X)) r16: d(ok(X)) -> ok(d(X)) r17: h(ok(X)) -> ok(h(X)) r18: top(mark(X)) -> top(proper(X)) r19: top(ok(X)) -> top(active(X)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: top#_A(x1) = ((1,0,0,0),(0,1,0,0),(0,1,1,0),(0,1,1,1)) x1 ok_A(x1) = ((1,0,0,0),(0,0,0,0),(1,0,0,0),(1,1,0,0)) x1 + (0,11,1,7) active_A(x1) = ((1,0,0,0),(0,0,0,0),(1,0,0,0),(0,1,0,0)) x1 + (0,1,3,6) mark_A(x1) = ((1,0,0,0),(0,0,0,0),(1,0,0,0),(1,1,0,0)) x1 + (3,11,4,1) proper_A(x1) = ((1,0,0,0),(0,1,0,0),(0,0,1,0),(1,0,0,0)) x1 + (1,6,7,0) f_A(x1) = ((1,0,0,0),(0,1,0,0),(1,0,0,0),(0,1,0,0)) x1 + (5,0,7,0) h_A(x1) = ((1,0,0,0),(0,1,0,0),(1,1,0,0),(1,0,0,0)) x1 + (9,0,0,7) c_A(x1) = (5,12,7,25) g_A(x1) = x1 + (0,1,1,0) d_A(x1) = (1,17,3,26) The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(h(X)) -> active#(X) p2: active#(f(X)) -> active#(X) and R consists of: r1: active(f(f(X))) -> mark(c(f(g(f(X))))) r2: active(c(X)) -> mark(d(X)) r3: active(h(X)) -> mark(c(d(X))) r4: active(f(X)) -> f(active(X)) r5: active(h(X)) -> h(active(X)) r6: f(mark(X)) -> mark(f(X)) r7: h(mark(X)) -> mark(h(X)) r8: proper(f(X)) -> f(proper(X)) r9: proper(c(X)) -> c(proper(X)) r10: proper(g(X)) -> g(proper(X)) r11: proper(d(X)) -> d(proper(X)) r12: proper(h(X)) -> h(proper(X)) r13: f(ok(X)) -> ok(f(X)) r14: c(ok(X)) -> ok(c(X)) r15: g(ok(X)) -> ok(g(X)) r16: d(ok(X)) -> ok(d(X)) r17: h(ok(X)) -> ok(h(X)) r18: top(mark(X)) -> top(proper(X)) r19: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: active#_A(x1) = ((1,0,0,0),(0,1,0,0),(0,0,1,0),(0,1,1,1)) x1 h_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) f_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: proper#(h(X)) -> proper#(X) p2: proper#(d(X)) -> proper#(X) p3: proper#(g(X)) -> proper#(X) p4: proper#(c(X)) -> proper#(X) p5: proper#(f(X)) -> proper#(X) and R consists of: r1: active(f(f(X))) -> mark(c(f(g(f(X))))) r2: active(c(X)) -> mark(d(X)) r3: active(h(X)) -> mark(c(d(X))) r4: active(f(X)) -> f(active(X)) r5: active(h(X)) -> h(active(X)) r6: f(mark(X)) -> mark(f(X)) r7: h(mark(X)) -> mark(h(X)) r8: proper(f(X)) -> f(proper(X)) r9: proper(c(X)) -> c(proper(X)) r10: proper(g(X)) -> g(proper(X)) r11: proper(d(X)) -> d(proper(X)) r12: proper(h(X)) -> h(proper(X)) r13: f(ok(X)) -> ok(f(X)) r14: c(ok(X)) -> ok(c(X)) r15: g(ok(X)) -> ok(g(X)) r16: d(ok(X)) -> ok(d(X)) r17: h(ok(X)) -> ok(h(X)) r18: top(mark(X)) -> top(proper(X)) r19: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: proper#_A(x1) = ((1,0,0,0),(1,0,0,0),(1,1,0,0),(1,1,1,0)) x1 h_A(x1) = ((1,0,0,0),(1,0,0,0),(1,1,0,0),(1,1,1,0)) x1 + (1,1,1,1) d_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) g_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,0,0),(1,1,1,0)) x1 + (1,1,1,1) c_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) f_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) The next rules are strictly ordered: p1, p2, p3, p4, p5 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: c#(ok(X)) -> c#(X) and R consists of: r1: active(f(f(X))) -> mark(c(f(g(f(X))))) r2: active(c(X)) -> mark(d(X)) r3: active(h(X)) -> mark(c(d(X))) r4: active(f(X)) -> f(active(X)) r5: active(h(X)) -> h(active(X)) r6: f(mark(X)) -> mark(f(X)) r7: h(mark(X)) -> mark(h(X)) r8: proper(f(X)) -> f(proper(X)) r9: proper(c(X)) -> c(proper(X)) r10: proper(g(X)) -> g(proper(X)) r11: proper(d(X)) -> d(proper(X)) r12: proper(h(X)) -> h(proper(X)) r13: f(ok(X)) -> ok(f(X)) r14: c(ok(X)) -> ok(c(X)) r15: g(ok(X)) -> ok(g(X)) r16: d(ok(X)) -> ok(d(X)) r17: h(ok(X)) -> ok(h(X)) r18: top(mark(X)) -> top(proper(X)) r19: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: c#_A(x1) = ((1,0,0,0),(0,1,0,0),(0,0,1,0),(0,1,1,1)) x1 ok_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,0)) x1 + (1,0,0,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(mark(X)) -> f#(X) p2: f#(ok(X)) -> f#(X) and R consists of: r1: active(f(f(X))) -> mark(c(f(g(f(X))))) r2: active(c(X)) -> mark(d(X)) r3: active(h(X)) -> mark(c(d(X))) r4: active(f(X)) -> f(active(X)) r5: active(h(X)) -> h(active(X)) r6: f(mark(X)) -> mark(f(X)) r7: h(mark(X)) -> mark(h(X)) r8: proper(f(X)) -> f(proper(X)) r9: proper(c(X)) -> c(proper(X)) r10: proper(g(X)) -> g(proper(X)) r11: proper(d(X)) -> d(proper(X)) r12: proper(h(X)) -> h(proper(X)) r13: f(ok(X)) -> ok(f(X)) r14: c(ok(X)) -> ok(c(X)) r15: g(ok(X)) -> ok(g(X)) r16: d(ok(X)) -> ok(d(X)) r17: h(ok(X)) -> ok(h(X)) r18: top(mark(X)) -> top(proper(X)) r19: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: f#_A(x1) = ((1,0,0,0),(0,1,0,0),(0,1,1,0),(0,1,1,1)) x1 mark_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) ok_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: g#(ok(X)) -> g#(X) and R consists of: r1: active(f(f(X))) -> mark(c(f(g(f(X))))) r2: active(c(X)) -> mark(d(X)) r3: active(h(X)) -> mark(c(d(X))) r4: active(f(X)) -> f(active(X)) r5: active(h(X)) -> h(active(X)) r6: f(mark(X)) -> mark(f(X)) r7: h(mark(X)) -> mark(h(X)) r8: proper(f(X)) -> f(proper(X)) r9: proper(c(X)) -> c(proper(X)) r10: proper(g(X)) -> g(proper(X)) r11: proper(d(X)) -> d(proper(X)) r12: proper(h(X)) -> h(proper(X)) r13: f(ok(X)) -> ok(f(X)) r14: c(ok(X)) -> ok(c(X)) r15: g(ok(X)) -> ok(g(X)) r16: d(ok(X)) -> ok(d(X)) r17: h(ok(X)) -> ok(h(X)) r18: top(mark(X)) -> top(proper(X)) r19: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: g#_A(x1) = ((1,0,0,0),(0,1,0,0),(0,0,1,0),(0,1,1,1)) x1 ok_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,0)) x1 + (1,0,0,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: d#(ok(X)) -> d#(X) and R consists of: r1: active(f(f(X))) -> mark(c(f(g(f(X))))) r2: active(c(X)) -> mark(d(X)) r3: active(h(X)) -> mark(c(d(X))) r4: active(f(X)) -> f(active(X)) r5: active(h(X)) -> h(active(X)) r6: f(mark(X)) -> mark(f(X)) r7: h(mark(X)) -> mark(h(X)) r8: proper(f(X)) -> f(proper(X)) r9: proper(c(X)) -> c(proper(X)) r10: proper(g(X)) -> g(proper(X)) r11: proper(d(X)) -> d(proper(X)) r12: proper(h(X)) -> h(proper(X)) r13: f(ok(X)) -> ok(f(X)) r14: c(ok(X)) -> ok(c(X)) r15: g(ok(X)) -> ok(g(X)) r16: d(ok(X)) -> ok(d(X)) r17: h(ok(X)) -> ok(h(X)) r18: top(mark(X)) -> top(proper(X)) r19: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: d#_A(x1) = ((1,0,0,0),(0,1,0,0),(0,0,1,0),(0,1,1,1)) x1 ok_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,0)) x1 + (1,0,0,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: h#(mark(X)) -> h#(X) p2: h#(ok(X)) -> h#(X) and R consists of: r1: active(f(f(X))) -> mark(c(f(g(f(X))))) r2: active(c(X)) -> mark(d(X)) r3: active(h(X)) -> mark(c(d(X))) r4: active(f(X)) -> f(active(X)) r5: active(h(X)) -> h(active(X)) r6: f(mark(X)) -> mark(f(X)) r7: h(mark(X)) -> mark(h(X)) r8: proper(f(X)) -> f(proper(X)) r9: proper(c(X)) -> c(proper(X)) r10: proper(g(X)) -> g(proper(X)) r11: proper(d(X)) -> d(proper(X)) r12: proper(h(X)) -> h(proper(X)) r13: f(ok(X)) -> ok(f(X)) r14: c(ok(X)) -> ok(c(X)) r15: g(ok(X)) -> ok(g(X)) r16: d(ok(X)) -> ok(d(X)) r17: h(ok(X)) -> ok(h(X)) r18: top(mark(X)) -> top(proper(X)) r19: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: h#_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 mark_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) ok_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19 We remove them from the problem. Then no dependency pair remains.