YES We show the termination of the TRS R: active(f(f(a()))) -> mark(c(f(g(f(a()))))) mark(f(X)) -> active(f(mark(X))) mark(a()) -> active(a()) mark(c(X)) -> active(c(X)) mark(g(X)) -> active(g(mark(X))) f(mark(X)) -> f(X) f(active(X)) -> f(X) c(mark(X)) -> c(X) c(active(X)) -> c(X) g(mark(X)) -> g(X) g(active(X)) -> g(X) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(f(f(a()))) -> mark#(c(f(g(f(a()))))) p2: active#(f(f(a()))) -> c#(f(g(f(a())))) p3: active#(f(f(a()))) -> f#(g(f(a()))) p4: active#(f(f(a()))) -> g#(f(a())) p5: mark#(f(X)) -> active#(f(mark(X))) p6: mark#(f(X)) -> f#(mark(X)) p7: mark#(f(X)) -> mark#(X) p8: mark#(a()) -> active#(a()) p9: mark#(c(X)) -> active#(c(X)) p10: mark#(g(X)) -> active#(g(mark(X))) p11: mark#(g(X)) -> g#(mark(X)) p12: mark#(g(X)) -> mark#(X) p13: f#(mark(X)) -> f#(X) p14: f#(active(X)) -> f#(X) p15: c#(mark(X)) -> c#(X) p16: c#(active(X)) -> c#(X) p17: g#(mark(X)) -> g#(X) p18: g#(active(X)) -> g#(X) and R consists of: r1: active(f(f(a()))) -> mark(c(f(g(f(a()))))) r2: mark(f(X)) -> active(f(mark(X))) r3: mark(a()) -> active(a()) r4: mark(c(X)) -> active(c(X)) r5: mark(g(X)) -> active(g(mark(X))) r6: f(mark(X)) -> f(X) r7: f(active(X)) -> f(X) r8: c(mark(X)) -> c(X) r9: c(active(X)) -> c(X) r10: g(mark(X)) -> g(X) r11: g(active(X)) -> g(X) The estimated dependency graph contains the following SCCs: {p7, p12} {p1, p9} {p13, p14} {p17, p18} {p15, p16} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(g(X)) -> mark#(X) p2: mark#(f(X)) -> mark#(X) and R consists of: r1: active(f(f(a()))) -> mark(c(f(g(f(a()))))) r2: mark(f(X)) -> active(f(mark(X))) r3: mark(a()) -> active(a()) r4: mark(c(X)) -> active(c(X)) r5: mark(g(X)) -> active(g(mark(X))) r6: f(mark(X)) -> f(X) r7: f(active(X)) -> f(X) r8: c(mark(X)) -> c(X) r9: c(active(X)) -> c(X) r10: g(mark(X)) -> g(X) r11: g(active(X)) -> g(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: mark#_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 g_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) f_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(f(f(a()))) -> mark#(c(f(g(f(a()))))) p2: mark#(c(X)) -> active#(c(X)) and R consists of: r1: active(f(f(a()))) -> mark(c(f(g(f(a()))))) r2: mark(f(X)) -> active(f(mark(X))) r3: mark(a()) -> active(a()) r4: mark(c(X)) -> active(c(X)) r5: mark(g(X)) -> active(g(mark(X))) r6: f(mark(X)) -> f(X) r7: f(active(X)) -> f(X) r8: c(mark(X)) -> c(X) r9: c(active(X)) -> c(X) r10: g(mark(X)) -> g(X) r11: g(active(X)) -> g(X) The set of usable rules consists of r8, r9 Take the reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: active#_A(x1) = ((1,0,0,0),(0,0,0,0),(1,0,0,0),(0,0,0,0)) x1 + (0,2,0,0) f_A(x1) = ((0,0,0,0),(1,0,0,0),(0,0,0,0),(0,0,0,0)) x1 + (3,0,1,1) a_A() = (1,1,1,0) mark#_A(x1) = ((0,0,0,0),(1,0,0,0),(0,0,0,0),(0,0,0,0)) x1 + (2,0,0,1) c_A(x1) = (1,1,1,1) g_A(x1) = ((0,0,0,0),(1,0,0,0),(0,0,0,0),(0,0,0,0)) x1 + (1,0,1,1) mark_A(x1) = ((0,0,0,0),(1,0,0,0),(0,0,0,0),(1,1,0,0)) x1 + (1,1,1,1) active_A(x1) = ((0,0,0,0),(0,0,0,0),(0,0,0,0),(1,0,0,0)) x1 + (1,1,1,1) The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(mark(X)) -> f#(X) p2: f#(active(X)) -> f#(X) and R consists of: r1: active(f(f(a()))) -> mark(c(f(g(f(a()))))) r2: mark(f(X)) -> active(f(mark(X))) r3: mark(a()) -> active(a()) r4: mark(c(X)) -> active(c(X)) r5: mark(g(X)) -> active(g(mark(X))) r6: f(mark(X)) -> f(X) r7: f(active(X)) -> f(X) r8: c(mark(X)) -> c(X) r9: c(active(X)) -> c(X) r10: g(mark(X)) -> g(X) r11: g(active(X)) -> g(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: f#_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 mark_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) active_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: g#(mark(X)) -> g#(X) p2: g#(active(X)) -> g#(X) and R consists of: r1: active(f(f(a()))) -> mark(c(f(g(f(a()))))) r2: mark(f(X)) -> active(f(mark(X))) r3: mark(a()) -> active(a()) r4: mark(c(X)) -> active(c(X)) r5: mark(g(X)) -> active(g(mark(X))) r6: f(mark(X)) -> f(X) r7: f(active(X)) -> f(X) r8: c(mark(X)) -> c(X) r9: c(active(X)) -> c(X) r10: g(mark(X)) -> g(X) r11: g(active(X)) -> g(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: g#_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 mark_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) active_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: c#(mark(X)) -> c#(X) p2: c#(active(X)) -> c#(X) and R consists of: r1: active(f(f(a()))) -> mark(c(f(g(f(a()))))) r2: mark(f(X)) -> active(f(mark(X))) r3: mark(a()) -> active(a()) r4: mark(c(X)) -> active(c(X)) r5: mark(g(X)) -> active(g(mark(X))) r6: f(mark(X)) -> f(X) r7: f(active(X)) -> f(X) r8: c(mark(X)) -> c(X) r9: c(active(X)) -> c(X) r10: g(mark(X)) -> g(X) r11: g(active(X)) -> g(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: c#_A(x1) = ((1,0,0,0),(0,1,0,0),(0,1,1,0),(0,1,1,1)) x1 mark_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) active_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11 We remove them from the problem. Then no dependency pair remains.