YES We show the termination of the TRS R: active(g(X)) -> mark(h(X)) active(c()) -> mark(d()) active(h(d())) -> mark(g(c())) mark(g(X)) -> active(g(X)) mark(h(X)) -> active(h(X)) mark(c()) -> active(c()) mark(d()) -> active(d()) g(mark(X)) -> g(X) g(active(X)) -> g(X) h(mark(X)) -> h(X) h(active(X)) -> h(X) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(g(X)) -> mark#(h(X)) p2: active#(g(X)) -> h#(X) p3: active#(c()) -> mark#(d()) p4: active#(h(d())) -> mark#(g(c())) p5: active#(h(d())) -> g#(c()) p6: mark#(g(X)) -> active#(g(X)) p7: mark#(h(X)) -> active#(h(X)) p8: mark#(c()) -> active#(c()) p9: mark#(d()) -> active#(d()) p10: g#(mark(X)) -> g#(X) p11: g#(active(X)) -> g#(X) p12: h#(mark(X)) -> h#(X) p13: h#(active(X)) -> h#(X) and R consists of: r1: active(g(X)) -> mark(h(X)) r2: active(c()) -> mark(d()) r3: active(h(d())) -> mark(g(c())) r4: mark(g(X)) -> active(g(X)) r5: mark(h(X)) -> active(h(X)) r6: mark(c()) -> active(c()) r7: mark(d()) -> active(d()) r8: g(mark(X)) -> g(X) r9: g(active(X)) -> g(X) r10: h(mark(X)) -> h(X) r11: h(active(X)) -> h(X) The estimated dependency graph contains the following SCCs: {p1, p4, p6, p7} {p12, p13} {p10, p11} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(g(X)) -> mark#(h(X)) p2: mark#(h(X)) -> active#(h(X)) p3: active#(h(d())) -> mark#(g(c())) p4: mark#(g(X)) -> active#(g(X)) and R consists of: r1: active(g(X)) -> mark(h(X)) r2: active(c()) -> mark(d()) r3: active(h(d())) -> mark(g(c())) r4: mark(g(X)) -> active(g(X)) r5: mark(h(X)) -> active(h(X)) r6: mark(c()) -> active(c()) r7: mark(d()) -> active(d()) r8: g(mark(X)) -> g(X) r9: g(active(X)) -> g(X) r10: h(mark(X)) -> h(X) r11: h(active(X)) -> h(X) The set of usable rules consists of r8, r9, r10, r11 Take the reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: active#_A(x1) = x1 + (0,8,12,0) g_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (3,1,1,1) mark#_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(0,0,0,0)) x1 + (1,0,0,1) h_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,8,4,1) d_A() = (5,1,1,1) c_A() = (1,1,1,1) mark_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) active_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) The next rules are strictly ordered: p1, p2, p3, p4 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: h#(mark(X)) -> h#(X) p2: h#(active(X)) -> h#(X) and R consists of: r1: active(g(X)) -> mark(h(X)) r2: active(c()) -> mark(d()) r3: active(h(d())) -> mark(g(c())) r4: mark(g(X)) -> active(g(X)) r5: mark(h(X)) -> active(h(X)) r6: mark(c()) -> active(c()) r7: mark(d()) -> active(d()) r8: g(mark(X)) -> g(X) r9: g(active(X)) -> g(X) r10: h(mark(X)) -> h(X) r11: h(active(X)) -> h(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: h#_A(x1) = ((1,0,0,0),(0,1,0,0),(0,1,1,0),(0,1,1,1)) x1 mark_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) active_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: g#(mark(X)) -> g#(X) p2: g#(active(X)) -> g#(X) and R consists of: r1: active(g(X)) -> mark(h(X)) r2: active(c()) -> mark(d()) r3: active(h(d())) -> mark(g(c())) r4: mark(g(X)) -> active(g(X)) r5: mark(h(X)) -> active(h(X)) r6: mark(c()) -> active(c()) r7: mark(d()) -> active(d()) r8: g(mark(X)) -> g(X) r9: g(active(X)) -> g(X) r10: h(mark(X)) -> h(X) r11: h(active(X)) -> h(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: g#_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 mark_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) active_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11 We remove them from the problem. Then no dependency pair remains.