YES We show the termination of the TRS R: from(X) -> cons(X,n__from(s(X))) first(|0|(),Z) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) sel(|0|(),cons(X,Z)) -> X sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) from(X) -> n__from(X) first(X1,X2) -> n__first(X1,X2) activate(n__from(X)) -> from(X) activate(n__first(X1,X2)) -> first(X1,X2) activate(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: first#(s(X),cons(Y,Z)) -> activate#(Z) p2: sel#(s(X),cons(Y,Z)) -> sel#(X,activate(Z)) p3: sel#(s(X),cons(Y,Z)) -> activate#(Z) p4: activate#(n__from(X)) -> from#(X) p5: activate#(n__first(X1,X2)) -> first#(X1,X2) and R consists of: r1: from(X) -> cons(X,n__from(s(X))) r2: first(|0|(),Z) -> nil() r3: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r4: sel(|0|(),cons(X,Z)) -> X r5: sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) r6: from(X) -> n__from(X) r7: first(X1,X2) -> n__first(X1,X2) r8: activate(n__from(X)) -> from(X) r9: activate(n__first(X1,X2)) -> first(X1,X2) r10: activate(X) -> X The estimated dependency graph contains the following SCCs: {p2} {p1, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: sel#(s(X),cons(Y,Z)) -> sel#(X,activate(Z)) and R consists of: r1: from(X) -> cons(X,n__from(s(X))) r2: first(|0|(),Z) -> nil() r3: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r4: sel(|0|(),cons(X,Z)) -> X r5: sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) r6: from(X) -> n__from(X) r7: first(X1,X2) -> n__first(X1,X2) r8: activate(n__from(X)) -> from(X) r9: activate(n__first(X1,X2)) -> first(X1,X2) r10: activate(X) -> X The set of usable rules consists of r1, r2, r3, r6, r7, r8, r9, r10 Take the reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: sel#_A(x1,x2) = ((1,0,0,0),(0,1,0,0),(1,0,0,0),(0,0,1,0)) x1 + ((0,0,0,0),(1,0,0,0),(1,1,0,0),(0,0,0,0)) x2 s_A(x1) = ((1,0,0,0),(0,1,0,0),(0,0,1,0),(1,1,1,1)) x1 + (1,1,1,1) cons_A(x1,x2) = ((0,0,0,0),(1,0,0,0),(0,1,0,0),(0,0,1,0)) x1 + ((0,0,0,0),(0,0,0,0),(0,0,0,0),(1,0,0,0)) x2 + (1,4,4,0) activate_A(x1) = ((1,0,0,0),(0,1,0,0),(0,1,0,0),(0,1,1,0)) x1 + (3,1,1,1) from_A(x1) = ((0,0,0,0),(0,0,0,0),(1,0,0,0),(0,0,0,0)) x1 + (9,3,3,7) n__from_A(x1) = ((0,0,0,0),(0,0,0,0),(1,0,0,0),(1,1,0,0)) x1 + (8,1,4,0) first_A(x1,x2) = ((0,0,0,0),(0,0,0,0),(1,0,0,0),(0,0,0,0)) x1 + (2,5,0,2) |0|_A() = (1,1,1,1) nil_A() = (0,0,0,0) n__first_A(x1,x2) = ((0,0,0,0),(1,0,0,0),(1,1,0,0),(1,1,1,0)) x1 + ((0,0,0,0),(1,0,0,0),(1,1,0,0),(1,1,1,0)) x2 + (1,6,1,0) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: first#(s(X),cons(Y,Z)) -> activate#(Z) p2: activate#(n__first(X1,X2)) -> first#(X1,X2) and R consists of: r1: from(X) -> cons(X,n__from(s(X))) r2: first(|0|(),Z) -> nil() r3: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r4: sel(|0|(),cons(X,Z)) -> X r5: sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) r6: from(X) -> n__from(X) r7: first(X1,X2) -> n__first(X1,X2) r8: activate(n__from(X)) -> from(X) r9: activate(n__first(X1,X2)) -> first(X1,X2) r10: activate(X) -> X The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: first#_A(x1,x2) = x2 + (0,3,0,0) s_A(x1) = ((0,0,0,0),(1,0,0,0),(0,1,0,0),(1,1,1,0)) x1 + (1,1,1,1) cons_A(x1,x2) = ((1,0,0,0),(1,1,0,0),(0,0,1,0),(1,1,1,1)) x1 + ((1,0,0,0),(0,0,0,0),(1,0,0,0),(0,1,0,0)) x2 + (1,0,1,1) activate#_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,0)) x1 + (0,0,2,2) n__first_A(x1,x2) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x2 + (1,1,1,1) The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains.