YES We show the termination of the TRS R: a__f(f(a())) -> a__f(g(f(a()))) mark(f(X)) -> a__f(X) mark(a()) -> a() mark(g(X)) -> g(mark(X)) a__f(X) -> f(X) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__f#(f(a())) -> a__f#(g(f(a()))) p2: mark#(f(X)) -> a__f#(X) p3: mark#(g(X)) -> mark#(X) and R consists of: r1: a__f(f(a())) -> a__f(g(f(a()))) r2: mark(f(X)) -> a__f(X) r3: mark(a()) -> a() r4: mark(g(X)) -> g(mark(X)) r5: a__f(X) -> f(X) The estimated dependency graph contains the following SCCs: {p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(g(X)) -> mark#(X) and R consists of: r1: a__f(f(a())) -> a__f(g(f(a()))) r2: mark(f(X)) -> a__f(X) r3: mark(a()) -> a() r4: mark(g(X)) -> g(mark(X)) r5: a__f(X) -> f(X) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: mark#_A(x1) = ((1,0,0,0),(0,1,0,0),(0,0,1,0),(0,1,1,1)) x1 g_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,0)) x1 + (1,0,0,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.