YES We show the termination of the TRS R: f(nil()) -> nil() f(.(nil(),y)) -> .(nil(),f(y)) f(.(.(x,y),z)) -> f(.(x,.(y,z))) g(nil()) -> nil() g(.(x,nil())) -> .(g(x),nil()) g(.(x,.(y,z))) -> g(.(.(x,y),z)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(.(nil(),y)) -> f#(y) p2: f#(.(.(x,y),z)) -> f#(.(x,.(y,z))) p3: g#(.(x,nil())) -> g#(x) p4: g#(.(x,.(y,z))) -> g#(.(.(x,y),z)) and R consists of: r1: f(nil()) -> nil() r2: f(.(nil(),y)) -> .(nil(),f(y)) r3: f(.(.(x,y),z)) -> f(.(x,.(y,z))) r4: g(nil()) -> nil() r5: g(.(x,nil())) -> .(g(x),nil()) r6: g(.(x,.(y,z))) -> g(.(.(x,y),z)) The estimated dependency graph contains the following SCCs: {p1, p2} {p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(.(nil(),y)) -> f#(y) p2: f#(.(.(x,y),z)) -> f#(.(x,.(y,z))) and R consists of: r1: f(nil()) -> nil() r2: f(.(nil(),y)) -> .(nil(),f(y)) r3: f(.(.(x,y),z)) -> f(.(x,.(y,z))) r4: g(nil()) -> nil() r5: g(.(x,nil())) -> .(g(x),nil()) r6: g(.(x,.(y,z))) -> g(.(.(x,y),z)) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: f#_A(x1) = ((1,0,0,0),(1,0,0,0),(0,0,0,0),(0,0,0,0)) x1 ._A(x1,x2) = ((1,0,0,0),(0,1,0,0),(0,1,1,0),(0,0,0,0)) x1 + ((1,0,0,0),(0,0,0,0),(1,1,0,0),(0,0,0,0)) x2 + (1,1,1,1) nil_A() = (1,1,1,1) The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(.(.(x,y),z)) -> f#(.(x,.(y,z))) and R consists of: r1: f(nil()) -> nil() r2: f(.(nil(),y)) -> .(nil(),f(y)) r3: f(.(.(x,y),z)) -> f(.(x,.(y,z))) r4: g(nil()) -> nil() r5: g(.(x,nil())) -> .(g(x),nil()) r6: g(.(x,.(y,z))) -> g(.(.(x,y),z)) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(.(.(x,y),z)) -> f#(.(x,.(y,z))) and R consists of: r1: f(nil()) -> nil() r2: f(.(nil(),y)) -> .(nil(),f(y)) r3: f(.(.(x,y),z)) -> f(.(x,.(y,z))) r4: g(nil()) -> nil() r5: g(.(x,nil())) -> .(g(x),nil()) r6: g(.(x,.(y,z))) -> g(.(.(x,y),z)) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: f#_A(x1) = ((0,0,0,0),(1,0,0,0),(1,0,0,0),(0,1,0,0)) x1 ._A(x1,x2) = ((1,0,0,0),(0,1,0,0),(0,1,1,0),(0,1,0,1)) x1 + (1,1,1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: g#(.(x,nil())) -> g#(x) p2: g#(.(x,.(y,z))) -> g#(.(.(x,y),z)) and R consists of: r1: f(nil()) -> nil() r2: f(.(nil(),y)) -> .(nil(),f(y)) r3: f(.(.(x,y),z)) -> f(.(x,.(y,z))) r4: g(nil()) -> nil() r5: g(.(x,nil())) -> .(g(x),nil()) r6: g(.(x,.(y,z))) -> g(.(.(x,y),z)) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: g#_A(x1) = ((1,0,0,0),(0,1,0,0),(0,0,1,0),(0,1,1,1)) x1 ._A(x1,x2) = x1 + ((1,0,0,0),(1,0,0,0),(1,1,0,0),(0,0,1,0)) x2 + (1,1,1,1) nil_A() = (1,1,1,1) The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains.