YES We show the termination of the TRS R: int(|0|(),|0|()) -> .(|0|(),nil()) int(|0|(),s(y)) -> .(|0|(),int(s(|0|()),s(y))) int(s(x),|0|()) -> nil() int(s(x),s(y)) -> int_list(int(x,y)) int_list(nil()) -> nil() int_list(.(x,y)) -> .(s(x),int_list(y)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: int#(|0|(),s(y)) -> int#(s(|0|()),s(y)) p2: int#(s(x),s(y)) -> int_list#(int(x,y)) p3: int#(s(x),s(y)) -> int#(x,y) p4: int_list#(.(x,y)) -> int_list#(y) and R consists of: r1: int(|0|(),|0|()) -> .(|0|(),nil()) r2: int(|0|(),s(y)) -> .(|0|(),int(s(|0|()),s(y))) r3: int(s(x),|0|()) -> nil() r4: int(s(x),s(y)) -> int_list(int(x,y)) r5: int_list(nil()) -> nil() r6: int_list(.(x,y)) -> .(s(x),int_list(y)) The estimated dependency graph contains the following SCCs: {p1, p3} {p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: int#(|0|(),s(y)) -> int#(s(|0|()),s(y)) p2: int#(s(x),s(y)) -> int#(x,y) and R consists of: r1: int(|0|(),|0|()) -> .(|0|(),nil()) r2: int(|0|(),s(y)) -> .(|0|(),int(s(|0|()),s(y))) r3: int(s(x),|0|()) -> nil() r4: int(s(x),s(y)) -> int_list(int(x,y)) r5: int_list(nil()) -> nil() r6: int_list(.(x,y)) -> .(s(x),int_list(y)) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: int#_A(x1,x2) = ((1,0,0,0),(0,1,0,0),(0,1,0,0),(0,0,0,0)) x2 |0|_A() = (1,0,1,1) s_A(x1) = ((1,0,0,0),(1,0,0,0),(0,1,0,0),(0,0,1,0)) x1 + (1,1,1,1) The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: int#(|0|(),s(y)) -> int#(s(|0|()),s(y)) and R consists of: r1: int(|0|(),|0|()) -> .(|0|(),nil()) r2: int(|0|(),s(y)) -> .(|0|(),int(s(|0|()),s(y))) r3: int(s(x),|0|()) -> nil() r4: int(s(x),s(y)) -> int_list(int(x,y)) r5: int_list(nil()) -> nil() r6: int_list(.(x,y)) -> .(s(x),int_list(y)) The estimated dependency graph contains the following SCCs: (no SCCs) -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: int_list#(.(x,y)) -> int_list#(y) and R consists of: r1: int(|0|(),|0|()) -> .(|0|(),nil()) r2: int(|0|(),s(y)) -> .(|0|(),int(s(|0|()),s(y))) r3: int(s(x),|0|()) -> nil() r4: int(s(x),s(y)) -> int_list(int(x,y)) r5: int_list(nil()) -> nil() r6: int_list(.(x,y)) -> .(s(x),int_list(y)) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: int_list#_A(x1) = ((1,0,0,0),(0,1,0,0),(0,0,1,0),(1,1,1,1)) x1 ._A(x1,x2) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x2 + (1,1,1,1) The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6 We remove them from the problem. Then no dependency pair remains.