YES We show the termination of the TRS R: f(|0|()) -> |1|() f(s(x)) -> g(x,s(x)) g(|0|(),y) -> y g(s(x),y) -> g(x,+(y,s(x))) +(x,|0|()) -> x +(x,s(y)) -> s(+(x,y)) g(s(x),y) -> g(x,s(+(y,x))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(s(x)) -> g#(x,s(x)) p2: g#(s(x),y) -> g#(x,+(y,s(x))) p3: g#(s(x),y) -> +#(y,s(x)) p4: +#(x,s(y)) -> +#(x,y) p5: g#(s(x),y) -> g#(x,s(+(y,x))) p6: g#(s(x),y) -> +#(y,x) and R consists of: r1: f(|0|()) -> |1|() r2: f(s(x)) -> g(x,s(x)) r3: g(|0|(),y) -> y r4: g(s(x),y) -> g(x,+(y,s(x))) r5: +(x,|0|()) -> x r6: +(x,s(y)) -> s(+(x,y)) r7: g(s(x),y) -> g(x,s(+(y,x))) The estimated dependency graph contains the following SCCs: {p2, p5} {p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: g#(s(x),y) -> g#(x,+(y,s(x))) p2: g#(s(x),y) -> g#(x,s(+(y,x))) and R consists of: r1: f(|0|()) -> |1|() r2: f(s(x)) -> g(x,s(x)) r3: g(|0|(),y) -> y r4: g(s(x),y) -> g(x,+(y,s(x))) r5: +(x,|0|()) -> x r6: +(x,s(y)) -> s(+(x,y)) r7: g(s(x),y) -> g(x,s(+(y,x))) The set of usable rules consists of r5, r6 Take the reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: g#_A(x1,x2) = ((1,0,0,0),(0,0,0,0),(1,1,0,0),(1,1,1,0)) x1 + ((0,0,0,0),(1,0,0,0),(1,1,0,0),(0,0,1,0)) x2 s_A(x1) = ((1,0,0,0),(0,0,0,0),(1,1,0,0),(1,1,1,0)) x1 + (1,1,1,1) +_A(x1,x2) = x1 + x2 + (1,3,3,1) |0|_A() = (1,1,1,1) The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: +#(x,s(y)) -> +#(x,y) and R consists of: r1: f(|0|()) -> |1|() r2: f(s(x)) -> g(x,s(x)) r3: g(|0|(),y) -> y r4: g(s(x),y) -> g(x,+(y,s(x))) r5: +(x,|0|()) -> x r6: +(x,s(y)) -> s(+(x,y)) r7: g(s(x),y) -> g(x,s(+(y,x))) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: +#_A(x1,x2) = ((0,0,0,0),(1,0,0,0),(0,0,0,0),(0,1,0,0)) x1 + ((1,0,0,0),(0,1,0,0),(0,1,0,0),(1,1,0,0)) x2 s_A(x1) = ((1,0,0,0),(1,1,0,0),(0,0,0,0),(1,1,1,0)) x1 + (1,1,1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.