YES We show the termination of the TRS R: dx(X) -> one() dx(a()) -> zero() dx(plus(ALPHA,BETA)) -> plus(dx(ALPHA),dx(BETA)) dx(times(ALPHA,BETA)) -> plus(times(BETA,dx(ALPHA)),times(ALPHA,dx(BETA))) dx(minus(ALPHA,BETA)) -> minus(dx(ALPHA),dx(BETA)) dx(neg(ALPHA)) -> neg(dx(ALPHA)) dx(div(ALPHA,BETA)) -> minus(div(dx(ALPHA),BETA),times(ALPHA,div(dx(BETA),exp(BETA,two())))) dx(ln(ALPHA)) -> div(dx(ALPHA),ALPHA) dx(exp(ALPHA,BETA)) -> plus(times(BETA,times(exp(ALPHA,minus(BETA,one())),dx(ALPHA))),times(exp(ALPHA,BETA),times(ln(ALPHA),dx(BETA)))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: dx#(plus(ALPHA,BETA)) -> dx#(ALPHA) p2: dx#(plus(ALPHA,BETA)) -> dx#(BETA) p3: dx#(times(ALPHA,BETA)) -> dx#(ALPHA) p4: dx#(times(ALPHA,BETA)) -> dx#(BETA) p5: dx#(minus(ALPHA,BETA)) -> dx#(ALPHA) p6: dx#(minus(ALPHA,BETA)) -> dx#(BETA) p7: dx#(neg(ALPHA)) -> dx#(ALPHA) p8: dx#(div(ALPHA,BETA)) -> dx#(ALPHA) p9: dx#(div(ALPHA,BETA)) -> dx#(BETA) p10: dx#(ln(ALPHA)) -> dx#(ALPHA) p11: dx#(exp(ALPHA,BETA)) -> dx#(ALPHA) p12: dx#(exp(ALPHA,BETA)) -> dx#(BETA) and R consists of: r1: dx(X) -> one() r2: dx(a()) -> zero() r3: dx(plus(ALPHA,BETA)) -> plus(dx(ALPHA),dx(BETA)) r4: dx(times(ALPHA,BETA)) -> plus(times(BETA,dx(ALPHA)),times(ALPHA,dx(BETA))) r5: dx(minus(ALPHA,BETA)) -> minus(dx(ALPHA),dx(BETA)) r6: dx(neg(ALPHA)) -> neg(dx(ALPHA)) r7: dx(div(ALPHA,BETA)) -> minus(div(dx(ALPHA),BETA),times(ALPHA,div(dx(BETA),exp(BETA,two())))) r8: dx(ln(ALPHA)) -> div(dx(ALPHA),ALPHA) r9: dx(exp(ALPHA,BETA)) -> plus(times(BETA,times(exp(ALPHA,minus(BETA,one())),dx(ALPHA))),times(exp(ALPHA,BETA),times(ln(ALPHA),dx(BETA)))) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: dx#(plus(ALPHA,BETA)) -> dx#(ALPHA) p2: dx#(exp(ALPHA,BETA)) -> dx#(BETA) p3: dx#(exp(ALPHA,BETA)) -> dx#(ALPHA) p4: dx#(ln(ALPHA)) -> dx#(ALPHA) p5: dx#(div(ALPHA,BETA)) -> dx#(BETA) p6: dx#(div(ALPHA,BETA)) -> dx#(ALPHA) p7: dx#(neg(ALPHA)) -> dx#(ALPHA) p8: dx#(minus(ALPHA,BETA)) -> dx#(BETA) p9: dx#(minus(ALPHA,BETA)) -> dx#(ALPHA) p10: dx#(times(ALPHA,BETA)) -> dx#(BETA) p11: dx#(times(ALPHA,BETA)) -> dx#(ALPHA) p12: dx#(plus(ALPHA,BETA)) -> dx#(BETA) and R consists of: r1: dx(X) -> one() r2: dx(a()) -> zero() r3: dx(plus(ALPHA,BETA)) -> plus(dx(ALPHA),dx(BETA)) r4: dx(times(ALPHA,BETA)) -> plus(times(BETA,dx(ALPHA)),times(ALPHA,dx(BETA))) r5: dx(minus(ALPHA,BETA)) -> minus(dx(ALPHA),dx(BETA)) r6: dx(neg(ALPHA)) -> neg(dx(ALPHA)) r7: dx(div(ALPHA,BETA)) -> minus(div(dx(ALPHA),BETA),times(ALPHA,div(dx(BETA),exp(BETA,two())))) r8: dx(ln(ALPHA)) -> div(dx(ALPHA),ALPHA) r9: dx(exp(ALPHA,BETA)) -> plus(times(BETA,times(exp(ALPHA,minus(BETA,one())),dx(ALPHA))),times(exp(ALPHA,BETA),times(ln(ALPHA),dx(BETA)))) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: dx#_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 plus_A(x1,x2) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x2 + (1,1,1,1) exp_A(x1,x2) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x2 + (1,1,1,1) ln_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) div_A(x1,x2) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x2 + (1,1,1,1) neg_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) minus_A(x1,x2) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x2 + (1,1,1,1) times_A(x1,x2) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x2 + (1,1,1,1) The next rules are strictly ordered: p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12 r1, r2, r3, r4, r5, r6, r7, r8, r9 We remove them from the problem. Then no dependency pair remains.