YES We show the termination of the TRS R: and(false(),false()) -> false() and(true(),false()) -> false() and(false(),true()) -> false() and(true(),true()) -> true() eq(nil(),nil()) -> true() eq(cons(T,L),nil()) -> false() eq(nil(),cons(T,L)) -> false() eq(cons(T,L),cons(Tp,Lp)) -> and(eq(T,Tp),eq(L,Lp)) eq(var(L),var(Lp)) -> eq(L,Lp) eq(var(L),apply(T,S)) -> false() eq(var(L),lambda(X,T)) -> false() eq(apply(T,S),var(L)) -> false() eq(apply(T,S),apply(Tp,Sp)) -> and(eq(T,Tp),eq(S,Sp)) eq(apply(T,S),lambda(X,Tp)) -> false() eq(lambda(X,T),var(L)) -> false() eq(lambda(X,T),apply(Tp,Sp)) -> false() eq(lambda(X,T),lambda(Xp,Tp)) -> and(eq(T,Tp),eq(X,Xp)) if(true(),var(K),var(L)) -> var(K) if(false(),var(K),var(L)) -> var(L) ren(var(L),var(K),var(Lp)) -> if(eq(L,Lp),var(K),var(Lp)) ren(X,Y,apply(T,S)) -> apply(ren(X,Y,T),ren(X,Y,S)) ren(X,Y,lambda(Z,T)) -> lambda(var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),ren(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: eq#(cons(T,L),cons(Tp,Lp)) -> and#(eq(T,Tp),eq(L,Lp)) p2: eq#(cons(T,L),cons(Tp,Lp)) -> eq#(T,Tp) p3: eq#(cons(T,L),cons(Tp,Lp)) -> eq#(L,Lp) p4: eq#(var(L),var(Lp)) -> eq#(L,Lp) p5: eq#(apply(T,S),apply(Tp,Sp)) -> and#(eq(T,Tp),eq(S,Sp)) p6: eq#(apply(T,S),apply(Tp,Sp)) -> eq#(T,Tp) p7: eq#(apply(T,S),apply(Tp,Sp)) -> eq#(S,Sp) p8: eq#(lambda(X,T),lambda(Xp,Tp)) -> and#(eq(T,Tp),eq(X,Xp)) p9: eq#(lambda(X,T),lambda(Xp,Tp)) -> eq#(T,Tp) p10: eq#(lambda(X,T),lambda(Xp,Tp)) -> eq#(X,Xp) p11: ren#(var(L),var(K),var(Lp)) -> if#(eq(L,Lp),var(K),var(Lp)) p12: ren#(var(L),var(K),var(Lp)) -> eq#(L,Lp) p13: ren#(X,Y,apply(T,S)) -> ren#(X,Y,T) p14: ren#(X,Y,apply(T,S)) -> ren#(X,Y,S) p15: ren#(X,Y,lambda(Z,T)) -> ren#(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T)) p16: ren#(X,Y,lambda(Z,T)) -> ren#(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T) and R consists of: r1: and(false(),false()) -> false() r2: and(true(),false()) -> false() r3: and(false(),true()) -> false() r4: and(true(),true()) -> true() r5: eq(nil(),nil()) -> true() r6: eq(cons(T,L),nil()) -> false() r7: eq(nil(),cons(T,L)) -> false() r8: eq(cons(T,L),cons(Tp,Lp)) -> and(eq(T,Tp),eq(L,Lp)) r9: eq(var(L),var(Lp)) -> eq(L,Lp) r10: eq(var(L),apply(T,S)) -> false() r11: eq(var(L),lambda(X,T)) -> false() r12: eq(apply(T,S),var(L)) -> false() r13: eq(apply(T,S),apply(Tp,Sp)) -> and(eq(T,Tp),eq(S,Sp)) r14: eq(apply(T,S),lambda(X,Tp)) -> false() r15: eq(lambda(X,T),var(L)) -> false() r16: eq(lambda(X,T),apply(Tp,Sp)) -> false() r17: eq(lambda(X,T),lambda(Xp,Tp)) -> and(eq(T,Tp),eq(X,Xp)) r18: if(true(),var(K),var(L)) -> var(K) r19: if(false(),var(K),var(L)) -> var(L) r20: ren(var(L),var(K),var(Lp)) -> if(eq(L,Lp),var(K),var(Lp)) r21: ren(X,Y,apply(T,S)) -> apply(ren(X,Y,T),ren(X,Y,S)) r22: ren(X,Y,lambda(Z,T)) -> lambda(var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),ren(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T))) The estimated dependency graph contains the following SCCs: {p13, p14, p15, p16} {p2, p3, p4, p6, p7, p9, p10} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: ren#(X,Y,lambda(Z,T)) -> ren#(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T) p2: ren#(X,Y,lambda(Z,T)) -> ren#(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T)) p3: ren#(X,Y,apply(T,S)) -> ren#(X,Y,S) p4: ren#(X,Y,apply(T,S)) -> ren#(X,Y,T) and R consists of: r1: and(false(),false()) -> false() r2: and(true(),false()) -> false() r3: and(false(),true()) -> false() r4: and(true(),true()) -> true() r5: eq(nil(),nil()) -> true() r6: eq(cons(T,L),nil()) -> false() r7: eq(nil(),cons(T,L)) -> false() r8: eq(cons(T,L),cons(Tp,Lp)) -> and(eq(T,Tp),eq(L,Lp)) r9: eq(var(L),var(Lp)) -> eq(L,Lp) r10: eq(var(L),apply(T,S)) -> false() r11: eq(var(L),lambda(X,T)) -> false() r12: eq(apply(T,S),var(L)) -> false() r13: eq(apply(T,S),apply(Tp,Sp)) -> and(eq(T,Tp),eq(S,Sp)) r14: eq(apply(T,S),lambda(X,Tp)) -> false() r15: eq(lambda(X,T),var(L)) -> false() r16: eq(lambda(X,T),apply(Tp,Sp)) -> false() r17: eq(lambda(X,T),lambda(Xp,Tp)) -> and(eq(T,Tp),eq(X,Xp)) r18: if(true(),var(K),var(L)) -> var(K) r19: if(false(),var(K),var(L)) -> var(L) r20: ren(var(L),var(K),var(Lp)) -> if(eq(L,Lp),var(K),var(Lp)) r21: ren(X,Y,apply(T,S)) -> apply(ren(X,Y,T),ren(X,Y,S)) r22: ren(X,Y,lambda(Z,T)) -> lambda(var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),ren(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T))) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22 Take the reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: ren#_A(x1,x2,x3) = ((0,0,0,0),(1,0,0,0),(0,1,0,0),(1,1,1,0)) x1 + ((0,0,0,0),(1,0,0,0),(1,0,0,0),(0,0,0,0)) x2 + ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x3 lambda_A(x1,x2) = ((1,0,0,0),(0,0,0,0),(1,1,0,0),(0,0,1,0)) x2 + (4,1,1,2) var_A(x1) = (7,1,1,3) cons_A(x1,x2) = ((0,0,0,0),(0,0,0,0),(0,0,0,0),(1,0,0,0)) x1 + x2 + (1,1,1,1) nil_A() = (1,1,1,1) ren_A(x1,x2,x3) = ((1,0,0,0),(0,0,0,0),(1,0,0,0),(0,0,0,0)) x3 + (0,2,0,1) apply_A(x1,x2) = ((1,0,0,0),(0,1,0,0),(1,0,0,0),(0,1,0,0)) x1 + ((1,0,0,0),(0,0,0,0),(1,0,0,0),(0,0,0,0)) x2 + (2,0,1,1) and_A(x1,x2) = ((0,0,0,0),(0,0,0,0),(1,0,0,0),(1,1,0,0)) x1 + ((0,0,0,0),(1,0,0,0),(0,1,0,0),(1,1,1,0)) x2 + (2,0,14,0) false_A() = (2,0,14,17) true_A() = (1,1,0,0) eq_A(x1,x2) = (3,4,1,16) if_A(x1,x2,x3) = (7,2,2,2) The next rules are strictly ordered: p1, p2, p3, p4 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: eq#(cons(T,L),cons(Tp,Lp)) -> eq#(T,Tp) p2: eq#(lambda(X,T),lambda(Xp,Tp)) -> eq#(X,Xp) p3: eq#(lambda(X,T),lambda(Xp,Tp)) -> eq#(T,Tp) p4: eq#(apply(T,S),apply(Tp,Sp)) -> eq#(S,Sp) p5: eq#(apply(T,S),apply(Tp,Sp)) -> eq#(T,Tp) p6: eq#(var(L),var(Lp)) -> eq#(L,Lp) p7: eq#(cons(T,L),cons(Tp,Lp)) -> eq#(L,Lp) and R consists of: r1: and(false(),false()) -> false() r2: and(true(),false()) -> false() r3: and(false(),true()) -> false() r4: and(true(),true()) -> true() r5: eq(nil(),nil()) -> true() r6: eq(cons(T,L),nil()) -> false() r7: eq(nil(),cons(T,L)) -> false() r8: eq(cons(T,L),cons(Tp,Lp)) -> and(eq(T,Tp),eq(L,Lp)) r9: eq(var(L),var(Lp)) -> eq(L,Lp) r10: eq(var(L),apply(T,S)) -> false() r11: eq(var(L),lambda(X,T)) -> false() r12: eq(apply(T,S),var(L)) -> false() r13: eq(apply(T,S),apply(Tp,Sp)) -> and(eq(T,Tp),eq(S,Sp)) r14: eq(apply(T,S),lambda(X,Tp)) -> false() r15: eq(lambda(X,T),var(L)) -> false() r16: eq(lambda(X,T),apply(Tp,Sp)) -> false() r17: eq(lambda(X,T),lambda(Xp,Tp)) -> and(eq(T,Tp),eq(X,Xp)) r18: if(true(),var(K),var(L)) -> var(K) r19: if(false(),var(K),var(L)) -> var(L) r20: ren(var(L),var(K),var(Lp)) -> if(eq(L,Lp),var(K),var(Lp)) r21: ren(X,Y,apply(T,S)) -> apply(ren(X,Y,T),ren(X,Y,S)) r22: ren(X,Y,lambda(Z,T)) -> lambda(var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),ren(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T))) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: eq#_A(x1,x2) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x2 cons_A(x1,x2) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x2 + (1,1,1,1) lambda_A(x1,x2) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + ((1,0,0,0),(1,1,0,0),(1,1,0,0),(1,1,1,0)) x2 + (1,1,1,1) apply_A(x1,x2) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x2 + (1,1,1,1) var_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) The next rules are strictly ordered: p1, p2, p3, p4, p5, p6, p7 We remove them from the problem. Then no dependency pair remains.