YES

We show the termination of the TRS R:

  eq(|0|(),|0|()) -> true()
  eq(|0|(),s(X)) -> false()
  eq(s(X),|0|()) -> false()
  eq(s(X),s(Y)) -> eq(X,Y)
  rm(N,nil()) -> nil()
  rm(N,add(M,X)) -> ifrm(eq(N,M),N,add(M,X))
  ifrm(true(),N,add(M,X)) -> rm(N,X)
  ifrm(false(),N,add(M,X)) -> add(M,rm(N,X))
  purge(nil()) -> nil()
  purge(add(N,X)) -> add(N,purge(rm(N,X)))

-- SCC decomposition.

Consider the dependency pair problem (P, R), where P consists of

p1: eq#(s(X),s(Y)) -> eq#(X,Y)
p2: rm#(N,add(M,X)) -> ifrm#(eq(N,M),N,add(M,X))
p3: rm#(N,add(M,X)) -> eq#(N,M)
p4: ifrm#(true(),N,add(M,X)) -> rm#(N,X)
p5: ifrm#(false(),N,add(M,X)) -> rm#(N,X)
p6: purge#(add(N,X)) -> purge#(rm(N,X))
p7: purge#(add(N,X)) -> rm#(N,X)

and R consists of:

r1: eq(|0|(),|0|()) -> true()
r2: eq(|0|(),s(X)) -> false()
r3: eq(s(X),|0|()) -> false()
r4: eq(s(X),s(Y)) -> eq(X,Y)
r5: rm(N,nil()) -> nil()
r6: rm(N,add(M,X)) -> ifrm(eq(N,M),N,add(M,X))
r7: ifrm(true(),N,add(M,X)) -> rm(N,X)
r8: ifrm(false(),N,add(M,X)) -> add(M,rm(N,X))
r9: purge(nil()) -> nil()
r10: purge(add(N,X)) -> add(N,purge(rm(N,X)))

The estimated dependency graph contains the following SCCs:

  {p6}
  {p2, p4, p5}
  {p1}


-- Reduction pair.

Consider the dependency pair problem (P, R), where P consists of

p1: purge#(add(N,X)) -> purge#(rm(N,X))

and R consists of:

r1: eq(|0|(),|0|()) -> true()
r2: eq(|0|(),s(X)) -> false()
r3: eq(s(X),|0|()) -> false()
r4: eq(s(X),s(Y)) -> eq(X,Y)
r5: rm(N,nil()) -> nil()
r6: rm(N,add(M,X)) -> ifrm(eq(N,M),N,add(M,X))
r7: ifrm(true(),N,add(M,X)) -> rm(N,X)
r8: ifrm(false(),N,add(M,X)) -> add(M,rm(N,X))
r9: purge(nil()) -> nil()
r10: purge(add(N,X)) -> add(N,purge(rm(N,X)))

The set of usable rules consists of

  r1, r2, r3, r4, r5, r6, r7, r8

Take the reduction pair:

  matrix interpretations:
  
    carrier: N^4
    order: lexicographic order
    interpretations:
      purge#_A(x1) = ((0,0,0,0),(1,0,0,0),(0,1,0,0),(1,0,0,0)) x1
      add_A(x1,x2) = ((0,0,0,0),(1,0,0,0),(0,1,0,0),(0,1,0,0)) x1 + ((1,0,0,0),(1,0,0,0),(0,1,0,0),(0,0,0,0)) x2 + (2,1,0,1)
      rm_A(x1,x2) = ((0,0,0,0),(0,0,0,0),(1,0,0,0),(1,1,0,0)) x1 + ((1,0,0,0),(0,1,0,0),(1,1,1,0),(0,0,0,1)) x2 + (1,4,7,3)
      eq_A(x1,x2) = ((1,0,0,0),(1,1,0,0),(0,0,1,0),(0,0,0,1)) x1 + x2 + (4,1,1,1)
      |0|_A() = (1,1,1,1)
      true_A() = (1,5,1,4)
      s_A(x1) = ((1,0,0,0),(0,1,0,0),(0,1,1,0),(0,1,1,1)) x1 + (1,1,1,1)
      false_A() = (0,0,4,2)
      ifrm_A(x1,x2,x3) = ((0,0,0,0),(0,0,0,0),(1,0,0,0),(0,0,0,0)) x1 + ((1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,1,0)) x3 + (1,2,5,2)
      nil_A() = (1,1,1,1)

The next rules are strictly ordered:

  p1

We remove them from the problem.  Then no dependency pair remains.

-- Reduction pair.

Consider the dependency pair problem (P, R), where P consists of

p1: ifrm#(false(),N,add(M,X)) -> rm#(N,X)
p2: rm#(N,add(M,X)) -> ifrm#(eq(N,M),N,add(M,X))
p3: ifrm#(true(),N,add(M,X)) -> rm#(N,X)

and R consists of:

r1: eq(|0|(),|0|()) -> true()
r2: eq(|0|(),s(X)) -> false()
r3: eq(s(X),|0|()) -> false()
r4: eq(s(X),s(Y)) -> eq(X,Y)
r5: rm(N,nil()) -> nil()
r6: rm(N,add(M,X)) -> ifrm(eq(N,M),N,add(M,X))
r7: ifrm(true(),N,add(M,X)) -> rm(N,X)
r8: ifrm(false(),N,add(M,X)) -> add(M,rm(N,X))
r9: purge(nil()) -> nil()
r10: purge(add(N,X)) -> add(N,purge(rm(N,X)))

The set of usable rules consists of

  r1, r2, r3, r4

Take the reduction pair:

  matrix interpretations:
  
    carrier: N^4
    order: lexicographic order
    interpretations:
      ifrm#_A(x1,x2,x3) = ((0,0,0,0),(1,0,0,0),(0,1,0,0),(0,0,1,0)) x1 + ((0,0,0,0),(0,0,0,0),(0,0,0,0),(1,0,0,0)) x2 + ((1,0,0,0),(1,0,0,0),(0,1,0,0),(0,1,1,0)) x3
      false_A() = (1,10,1,1)
      add_A(x1,x2) = ((1,0,0,0),(0,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,0)) x2 + (2,1,1,1)
      rm#_A(x1,x2) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,0,1,1)) x2 + (1,4,3,4)
      eq_A(x1,x2) = ((1,0,0,0),(0,1,0,0),(0,1,1,0),(0,0,0,1)) x1 + x2 + (6,7,7,1)
      true_A() = (1,1,11,4)
      |0|_A() = (1,1,1,1)
      s_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1)

The next rules are strictly ordered:

  p1, p2, p3

We remove them from the problem.  Then no dependency pair remains.

-- Reduction pair.

Consider the dependency pair problem (P, R), where P consists of

p1: eq#(s(X),s(Y)) -> eq#(X,Y)

and R consists of:

r1: eq(|0|(),|0|()) -> true()
r2: eq(|0|(),s(X)) -> false()
r3: eq(s(X),|0|()) -> false()
r4: eq(s(X),s(Y)) -> eq(X,Y)
r5: rm(N,nil()) -> nil()
r6: rm(N,add(M,X)) -> ifrm(eq(N,M),N,add(M,X))
r7: ifrm(true(),N,add(M,X)) -> rm(N,X)
r8: ifrm(false(),N,add(M,X)) -> add(M,rm(N,X))
r9: purge(nil()) -> nil()
r10: purge(add(N,X)) -> add(N,purge(rm(N,X)))

The set of usable rules consists of

  (no rules)

Take the reduction pair:

  matrix interpretations:
  
    carrier: N^4
    order: lexicographic order
    interpretations:
      eq#_A(x1,x2) = ((1,0,0,0),(0,0,0,0),(0,0,0,0),(1,0,0,0)) x1 + ((1,0,0,0),(0,0,0,0),(0,0,0,0),(1,0,0,0)) x2
      s_A(x1) = ((1,0,0,0),(0,0,0,0),(0,1,0,0),(1,1,1,0)) x1 + (1,1,1,1)

The next rules are strictly ordered:

  p1

We remove them from the problem.  Then no dependency pair remains.