YES

We show the termination of the TRS R:

  perfectp(|0|()) -> false()
  perfectp(s(x)) -> f(x,s(|0|()),s(x),s(x))
  f(|0|(),y,|0|(),u) -> true()
  f(|0|(),y,s(z),u) -> false()
  f(s(x),|0|(),z,u) -> f(x,u,minus(z,s(x)),u)
  f(s(x),s(y),z,u) -> if(le(x,y),f(s(x),minus(y,x),z,u),f(x,u,z,u))

-- SCC decomposition.

Consider the dependency pair problem (P, R), where P consists of

p1: perfectp#(s(x)) -> f#(x,s(|0|()),s(x),s(x))
p2: f#(s(x),|0|(),z,u) -> f#(x,u,minus(z,s(x)),u)
p3: f#(s(x),s(y),z,u) -> f#(s(x),minus(y,x),z,u)
p4: f#(s(x),s(y),z,u) -> f#(x,u,z,u)

and R consists of:

r1: perfectp(|0|()) -> false()
r2: perfectp(s(x)) -> f(x,s(|0|()),s(x),s(x))
r3: f(|0|(),y,|0|(),u) -> true()
r4: f(|0|(),y,s(z),u) -> false()
r5: f(s(x),|0|(),z,u) -> f(x,u,minus(z,s(x)),u)
r6: f(s(x),s(y),z,u) -> if(le(x,y),f(s(x),minus(y,x),z,u),f(x,u,z,u))

The estimated dependency graph contains the following SCCs:

  {p2, p4}


-- Reduction pair.

Consider the dependency pair problem (P, R), where P consists of

p1: f#(s(x),|0|(),z,u) -> f#(x,u,minus(z,s(x)),u)
p2: f#(s(x),s(y),z,u) -> f#(x,u,z,u)

and R consists of:

r1: perfectp(|0|()) -> false()
r2: perfectp(s(x)) -> f(x,s(|0|()),s(x),s(x))
r3: f(|0|(),y,|0|(),u) -> true()
r4: f(|0|(),y,s(z),u) -> false()
r5: f(s(x),|0|(),z,u) -> f(x,u,minus(z,s(x)),u)
r6: f(s(x),s(y),z,u) -> if(le(x,y),f(s(x),minus(y,x),z,u),f(x,u,z,u))

The set of usable rules consists of

  (no rules)

Take the reduction pair:

  matrix interpretations:
  
    carrier: N^4
    order: lexicographic order
    interpretations:
      f#_A(x1,x2,x3,x4) = ((1,0,0,0),(1,1,0,0),(0,1,1,0),(0,0,0,0)) x1 + ((0,0,0,0),(1,0,0,0),(0,1,0,0),(1,1,1,0)) x2 + ((0,0,0,0),(1,0,0,0),(1,1,0,0),(1,1,1,0)) x3 + ((0,0,0,0),(0,0,0,0),(1,0,0,0),(0,1,0,0)) x4
      s_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1)
      |0|_A() = (1,1,1,1)
      minus_A(x1,x2) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + ((0,0,0,0),(1,0,0,0),(1,1,0,0),(0,0,0,0)) x2 + (4,0,0,1)

The next rules are strictly ordered:

  p1, p2

We remove them from the problem.  Then no dependency pair remains.