YES We show the termination of the TRS R: f(empty(),l) -> l f(cons(x,k),l) -> g(k,l,cons(x,k)) g(a,b,c) -> f(a,cons(b,c)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(cons(x,k),l) -> g#(k,l,cons(x,k)) p2: g#(a,b,c) -> f#(a,cons(b,c)) and R consists of: r1: f(empty(),l) -> l r2: f(cons(x,k),l) -> g(k,l,cons(x,k)) r3: g(a,b,c) -> f(a,cons(b,c)) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(cons(x,k),l) -> g#(k,l,cons(x,k)) p2: g#(a,b,c) -> f#(a,cons(b,c)) and R consists of: r1: f(empty(),l) -> l r2: f(cons(x,k),l) -> g(k,l,cons(x,k)) r3: g(a,b,c) -> f(a,cons(b,c)) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: f#_A(x1,x2) = ((1,0,0,0),(0,1,0,0),(0,1,1,0),(0,0,1,1)) x1 + ((0,0,0,0),(1,0,0,0),(0,1,0,0),(1,1,1,0)) x2 + (0,0,2,0) cons_A(x1,x2) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x2 + (2,6,1,1) g#_A(x1,x2,x3) = x1 + ((0,0,0,0),(1,0,0,0),(1,1,0,0),(0,0,0,0)) x3 + (1,3,0,1) The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains.