YES We show the termination of the TRS R: app(app(map(),f),nil()) -> nil() app(app(map(),f),app(app(cons(),x),xs)) -> app(app(cons(),app(f,x)),app(app(map(),f),xs)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: app#(app(map(),f),app(app(cons(),x),xs)) -> app#(app(cons(),app(f,x)),app(app(map(),f),xs)) p2: app#(app(map(),f),app(app(cons(),x),xs)) -> app#(cons(),app(f,x)) p3: app#(app(map(),f),app(app(cons(),x),xs)) -> app#(f,x) p4: app#(app(map(),f),app(app(cons(),x),xs)) -> app#(app(map(),f),xs) and R consists of: r1: app(app(map(),f),nil()) -> nil() r2: app(app(map(),f),app(app(cons(),x),xs)) -> app(app(cons(),app(f,x)),app(app(map(),f),xs)) The estimated dependency graph contains the following SCCs: {p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: app#(app(map(),f),app(app(cons(),x),xs)) -> app#(f,x) p2: app#(app(map(),f),app(app(cons(),x),xs)) -> app#(app(map(),f),xs) and R consists of: r1: app(app(map(),f),nil()) -> nil() r2: app(app(map(),f),app(app(cons(),x),xs)) -> app(app(cons(),app(f,x)),app(app(map(),f),xs)) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: app#_A(x1,x2) = ((1,0,0,0),(1,1,0,0),(1,1,0,0),(1,0,0,0)) x1 + ((1,0,0,0),(1,1,0,0),(1,1,0,0),(1,1,0,0)) x2 app_A(x1,x2) = ((1,0,0,0),(0,1,0,0),(0,1,1,0),(0,0,0,0)) x1 + ((1,0,0,0),(1,1,0,0),(0,1,1,0),(1,1,1,1)) x2 map_A() = (1,1,1,1) cons_A() = (1,1,1,1) The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains.