YES We show the termination of the TRS R: active(f(x)) -> mark(f(f(x))) chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x))) mat(f(x),f(y())) -> f(mat(x,y())) chk(no(c())) -> active(c()) mat(f(x),c()) -> no(c()) f(active(x)) -> active(f(x)) f(no(x)) -> no(f(x)) f(mark(x)) -> mark(f(x)) tp(mark(x)) -> tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(f(x)) -> f#(f(x)) p2: chk#(no(f(x))) -> f#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x))) p3: chk#(no(f(x))) -> chk#(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x)) p4: chk#(no(f(x))) -> mat#(f(f(f(f(f(f(f(f(f(f(X())))))))))),x) p5: chk#(no(f(x))) -> f#(f(f(f(f(f(f(f(f(f(X())))))))))) p6: chk#(no(f(x))) -> f#(f(f(f(f(f(f(f(f(X()))))))))) p7: chk#(no(f(x))) -> f#(f(f(f(f(f(f(f(X())))))))) p8: chk#(no(f(x))) -> f#(f(f(f(f(f(f(X()))))))) p9: chk#(no(f(x))) -> f#(f(f(f(f(f(X())))))) p10: chk#(no(f(x))) -> f#(f(f(f(f(X()))))) p11: chk#(no(f(x))) -> f#(f(f(f(X())))) p12: chk#(no(f(x))) -> f#(f(f(X()))) p13: chk#(no(f(x))) -> f#(f(X())) p14: chk#(no(f(x))) -> f#(X()) p15: mat#(f(x),f(y())) -> f#(mat(x,y())) p16: mat#(f(x),f(y())) -> mat#(x,y()) p17: chk#(no(c())) -> active#(c()) p18: f#(active(x)) -> active#(f(x)) p19: f#(active(x)) -> f#(x) p20: f#(no(x)) -> f#(x) p21: f#(mark(x)) -> f#(x) p22: tp#(mark(x)) -> tp#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x))) p23: tp#(mark(x)) -> chk#(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x)) p24: tp#(mark(x)) -> mat#(f(f(f(f(f(f(f(f(f(f(X())))))))))),x) p25: tp#(mark(x)) -> f#(f(f(f(f(f(f(f(f(f(X())))))))))) p26: tp#(mark(x)) -> f#(f(f(f(f(f(f(f(f(X()))))))))) p27: tp#(mark(x)) -> f#(f(f(f(f(f(f(f(X())))))))) p28: tp#(mark(x)) -> f#(f(f(f(f(f(f(X()))))))) p29: tp#(mark(x)) -> f#(f(f(f(f(f(X())))))) p30: tp#(mark(x)) -> f#(f(f(f(f(X()))))) p31: tp#(mark(x)) -> f#(f(f(f(X())))) p32: tp#(mark(x)) -> f#(f(f(X()))) p33: tp#(mark(x)) -> f#(f(X())) p34: tp#(mark(x)) -> f#(X()) and R consists of: r1: active(f(x)) -> mark(f(f(x))) r2: chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x))) r3: mat(f(x),f(y())) -> f(mat(x,y())) r4: chk(no(c())) -> active(c()) r5: mat(f(x),c()) -> no(c()) r6: f(active(x)) -> active(f(x)) r7: f(no(x)) -> no(f(x)) r8: f(mark(x)) -> mark(f(x)) r9: tp(mark(x)) -> tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x))) The estimated dependency graph contains the following SCCs: {p22} {p3} {p1, p18, p19, p20, p21} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: tp#(mark(x)) -> tp#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x))) and R consists of: r1: active(f(x)) -> mark(f(f(x))) r2: chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x))) r3: mat(f(x),f(y())) -> f(mat(x,y())) r4: chk(no(c())) -> active(c()) r5: mat(f(x),c()) -> no(c()) r6: f(active(x)) -> active(f(x)) r7: f(no(x)) -> no(f(x)) r8: f(mark(x)) -> mark(f(x)) r9: tp(mark(x)) -> tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x))) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8 Take the reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: tp#_A(x1) = ((1,0,0,0),(1,1,0,0),(1,0,1,0),(1,1,0,1)) x1 mark_A(x1) = ((1,0,0,0),(0,0,0,0),(1,0,0,0),(0,1,0,0)) x1 + (0,1,6,6) chk_A(x1) = ((0,0,0,0),(1,0,0,0),(0,1,0,0),(0,0,1,0)) x1 + (0,1,5,4) mat_A(x1,x2) = ((1,0,0,0),(0,1,0,0),(0,1,0,0),(0,0,1,0)) x1 + ((0,0,0,0),(1,0,0,0),(0,1,0,0),(0,0,0,0)) x2 + (0,0,0,3) f_A(x1) = ((0,0,0,0),(1,0,0,0),(1,0,0,0),(1,0,0,0)) x1 + (0,1,6,8) X_A() = (1,1,0,0) active_A(x1) = ((1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,1,0)) x1 + (0,0,0,1) no_A(x1) = ((1,0,0,0),(0,1,0,0),(0,1,0,0),(0,0,0,0)) x1 + (0,0,4,7) y_A() = (5,1,1,1) c_A() = (0,0,1,0) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: chk#(no(f(x))) -> chk#(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x)) and R consists of: r1: active(f(x)) -> mark(f(f(x))) r2: chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x))) r3: mat(f(x),f(y())) -> f(mat(x,y())) r4: chk(no(c())) -> active(c()) r5: mat(f(x),c()) -> no(c()) r6: f(active(x)) -> active(f(x)) r7: f(no(x)) -> no(f(x)) r8: f(mark(x)) -> mark(f(x)) r9: tp(mark(x)) -> tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x))) The set of usable rules consists of r3, r5 Take the reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: chk#_A(x1) = ((1,0,0,0),(0,1,0,0),(1,0,0,0),(1,1,0,0)) x1 no_A(x1) = ((1,0,0,0),(0,1,0,0),(0,1,0,0),(0,0,0,0)) x1 + (0,0,0,3) f_A(x1) = x1 + (3,1,2,1) mat_A(x1,x2) = x2 + (1,2,1,2) X_A() = (1,1,1,0) y_A() = (1,1,1,1) c_A() = (1,3,1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(f(x)) -> f#(f(x)) p2: f#(mark(x)) -> f#(x) p3: f#(no(x)) -> f#(x) p4: f#(active(x)) -> f#(x) p5: f#(active(x)) -> active#(f(x)) and R consists of: r1: active(f(x)) -> mark(f(f(x))) r2: chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x))) r3: mat(f(x),f(y())) -> f(mat(x,y())) r4: chk(no(c())) -> active(c()) r5: mat(f(x),c()) -> no(c()) r6: f(active(x)) -> active(f(x)) r7: f(no(x)) -> no(f(x)) r8: f(mark(x)) -> mark(f(x)) r9: tp(mark(x)) -> tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x))) The set of usable rules consists of r1, r6, r7, r8 Take the reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: active#_A(x1) = ((1,0,0,0),(0,1,0,0),(0,1,1,0),(1,0,1,1)) x1 + (1,6,0,0) f_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,0)) x1 + (1,1,6,11) f#_A(x1) = ((1,0,0,0),(0,1,0,0),(1,0,1,0),(0,0,0,1)) x1 + (0,0,1,8) mark_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(0,0,0,1)) x1 + (2,4,1,1) no_A(x1) = ((1,0,0,0),(0,1,0,0),(1,1,0,0),(0,0,0,0)) x1 + (1,1,1,15) active_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(0,1,0,1)) x1 + (4,6,1,9) The next rules are strictly ordered: p1, p2, p3, p4, p5 We remove them from the problem. Then no dependency pair remains.